BQETH

Lite Paper 1.4
A decentralized dead man switch

Application to bequeath crypto assets.

J.D. Bertron
April 2022

Introduction
Market Need
Previous Work

Model
Security Goals
Decentralized, no Trusted Third Party
Forward Secrecy
Time integrity
Revocable
Uncensorable
Affordable
Low profile (few attack vectors)
Overview
Preliminaries
Time Lock Puzzles
Verification and Rewards
Chained Puzzles
Commit and Reveal
NuCypher
ChainLink VRF
IPFS

Implementation
User level secrets
Secret Encryption
Puzzles
Generation
Difficulty Adjustment
Puzzle Verification
Proxy ReEncryption Policy
Network Access
Invocation
Revocation
Reward Management
Reward Escrow
Reward Allocation
Interaction
Web3 Application
Wallet Integrations
Workflow
Monitoring
Puzzle Farming
Expiration Notifications
NuCypher
Reward pricing
Escrow Alerts

0O N~NNOOOOOOOOOOO O o O A W W

= A
N = =~ ©

N U U O P G U L QU (U L QU QI G §
W 00 00 00 o N oo aadbdh bbb PAPEPDMOWWWODNDNDND

PRE Policy Mismatches
IPFS Replication Gaps
BqETH Puzzle Farming

Conclusion

References

18
19
19

19
19

1.

Introduction

In this paper, we introduce a new method for implementing a blockchain based Decentralized
Dead Man Switch that allows for a piece of information, known only to its creator, to be released freely
to anyone upon their death. The method leverages a smart contract on the Ethereum blockchain to
maintain and publish a time lock puzzle that can be replaced at any time by the user. The puzzle,
when solved, will allow anyone to decrypt the information it conceals. The system requires a minimal
setup from the user, with the help of an open-source Web3 application. It also requires funding of the
contract instance to incentivize puzzle solving by disinterested parties.
The paper is organized as follows: The Market Need section discusses the types of applications this
system can enable and provides insight into the various ways it can be used. In section Previous
Work we discuss previous attempts to provide similar functionality. The Model section discusses the
overall architecture of the system and the external components involved. In Preliminaries, we go over
terminology and fundamentals that will be used in the paper. Subsection NuCypher in particular,
discusses one of the major external dependencies of this system, as well as subsection ChainLink
VRE. Finally the Implementation section discusses in detail how the system functions. A short
discussion then precedes the Conclusion, in which the business opportunities are laid out.

Market Need

The search for a dead man switch technology has a long history. Recently it has become
more important than ever to find one that can act as a canary for whistleblowers, protect people in
oppressive regimes who want to secure information that might deter someone from murdering them or
suppressing their work, or simply allow someone’s life-long secrets to be revealed upon their death.

A market study can probably reveal the price people might be willing to pay to avoid trusting a
third party with their crypto currency assets and the complexity of setup they would endure to put in
place multi-signature wallets. Several companies have emerged to answer this demand, for example
https://endowl.com/ or https://fortknoxster.com/ . These companies have not published details of their
approach, and it is unlikely they have solved the problem of decentralized trustless inheritance.

Additionally, with cryptocurrency asset ownership on the rise, it is legitimate to question what
the value of these crypto assets will be if a large portion of them remain dormant, lost forever, should
their owner die. For example, before year 2030, the number of new Bitcoin blocks mined per year will
dwarf significantly the number of bitcoins already mined, thus if a significant portion of these assets
are lost when their owners die, the overall quantity of Bitcoins contributing to liquidity will shrink - an
effective deflation of the supply.

N J (]] "l oo v a> a° a® O 47 > ' P o 7 > o ®) v 1 © A o v
S0 S 5T S ST S o T 8 T T T 8T T T T T

18M

you are here
15M

12M

bitcoins (blue)

oM

6M

50 25 12,5 6.25 3.125 1.5625 .78125 390625 1953125 09765625 .04882812 02441406 .01220703 00610351
[210,000 420,000 630,000 840,000 1,050,000 1,260,000 1,470,000 1,680,000 1,890,000 2,100,000 2,310,000 2,520,000 2,730,000

block height —— biteoins

%
inflation = coinbase x blocksPerYear / existingCoins % inflation

Bitcoin supply schedule (courtesy of http://bashco.github.io/)

https://endowl.com/
https://fortknoxster.com/

Yet in this scenario, one must wonder what will remain of the incentives to use the currency
as a store of value absent the possibility to bequeath those assets in a decentralized, uncensorable
and disintermediated fashion.

In its simplest form, the Decentralized Dead Man Switch simply allows information to be
encrypted and published until some work is performed to unseal the secret. It should be evident that
although a large secret can be locked in this manner, it is sufficient for most purposes to simply lock a
small secret which can grant access to a much larger store of information. In recent history, for
example, software businessman John McAfee claimed to have information implicating corporations
and politicians, protected by a Dead Man Switch, yet the information was never found. It is also clear
that other famous whistleblowers' might have benefited from such a technology. One can also
speculate whether journalists might be looking for such a technology to prevent suppression of their
investigations?.

In her popular book, “Crypto Asset Inheritance Planning”, Pamela Morgan warns that relying
solely on a smart contract based mechanism is ill advised, and we agree. A digital dead man switch is
simply a new, storage location option to secure data into the future.

Previous Work

The following review is not chronological. A simple attempt to create a smart contract that can
lock-up a certain amount of ERC20 tokens has been attempted by Mike Goldin, the creator of Token
Curated Registries (TCR). The ERC20 tokens are locked in the contract, only allowing the user
access to them. The concept is simple, but does not allow much secrecy about the amount of tokens
stored, and in fact does not allow any secret to be locked. Also a beneficiary must be designated in
advance, which introduces a vulnerability. The project is a proof of concept that could scale for
multiple users but has not been developed beyond that stage. Ronak Doshi and others proposed
Whistle, a Web3 App designed to assist Whistleblowers, during the 2018 Eth-India hackathon. The
application is leveraging the smart contract to store NuCypher policy aliases per users, but it is
unclear how the information is protected from early decryption, or if the decryption flow has been
properly implemented.

John Wineman, a participant at ETHDenver 2020 contributed a Solidity smart contract
designed to provide censorship resistant attestation named Living-proof. The contract functions as a
canary and is only meant to keep track of a user’s last invocation of the contract. If the last proof of life
is older than a certain number of block intervals, any external user is allowed to invalidate it. The
contract has a concept of a reward it calls a Pinata, for whoever invalidates the last proof.

On the commercial side, a Bitcoin Inheritance solution has been advertised by Casa. The
system is a legal escrow service offered that leverages up to 3 out of 5 multisignature control of a
Bitcoin Wallet (a less expensive variation uses 2 out of 3 multisig control). There is no support for
other blockchain assets or for secret keeping.

On the research side, several interesting solutions have been proposed. In Paralysis Proofs,
Zhang, Daian and Bentov propose to use a smart contract to restore multi-signature access to a
bitcoin wallet when one member of a multisignature group goes missing. Participants can challenge
one of the group members to prove they are ‘alive’, causing a special participant that runs on an Intel
SGX trusted computing platform, to issue two new transactions that will be signed by SGX. One
transaction is small while the other is designed to be invalid until a later time. This is supported by
newer P2SH Bitcoin OpCodes CLVT and CVT. The small transaction can be spent immediately by
the party that is challenged and that transaction invalidates the other. The system has limitations we
would prefer to avoid. First the system only supports Bitcoin. Second it requires a trusted
implementation to run on Intel SGX which holds all the keys as a trusted third party.

Another solution was proposed by Seres, Shlomovitz and Tiwari and named CryptoWills. The

' Julian Assange, Chelsea Manning, Seth Rich, Gary Webb, Edward Snowden.
2 WikiLeaks famously published an ‘Insurance File’ which has never been decrypted.

https://keys.casa/bitcoin-inheritance-plan

system leverages a Trusted Execution Environment (TEE) similar to SGX to perform computation of a
Time Lock Puzzle to release the TEE from needing an external source of time. Use of Multisignature
Bitcoin instructions then allows release of Bitcoins to beneficiaries.

Finally a service named Sarcophagus.io, claims to have created a decentralized dead man
switch for the purpose of providing inheritance of crypto assets. While convincing and much better
designed than other solutions above, the system still relies on a single server ‘archeologist’ having
control over the decryption of the payload. Besides the vulnerability this creates if the ‘archeologist’
could be compromised, or coerced, it is unclear what technological barriers exist to prevent early
decryption. The Lite Paper discusses at length the cute terminology choices that help convey the
concepts, but does not touch on the subjects of time keeping, trust relationships, forward secrecy, or
resilience. The system also relies on bounties awarded in the form of an ERC20 Token which does
not seem necessary. In the next section, we will set out the goals of our system and provide an
overview of our approach, which avoids all the pitfalls of previous solutions.

Model

In the real world a Dead Man Switch is a device that constantly monitors the presence of
stimulus from a person, in order to leave the state of a system intact. You can see them on power
tools or treadmills. Often in movies it goes beyond the simple kill-switch application, in which the
activation may cause a third party to regret interfering. The result may be an explosion, or the release
of embarrassing documents.

In the digital world, everything can be copied however, and it is difficult to imagine how
forward secrecy® can be maintained for secrets, long after private keys may have been revealed.
Because blockchains are public ledgers, it is also unreasonable to expect a secret to be ‘kept’ locked
inside a contract, since any curious miner or nation state is sure to be looking for it there.

Getting an accurate sense of time is also a challenge, which is exacerbated by the blockchain
environment since every miner may have their own local time. This has been mitigated by the use of
block-height, in some smart contracts and supported by blockchain opcodes, to prevent miners from
cheating. We will first establish the security goals that have been considered, then provide a high
level overview of the operation of the Dead Man Switch.

4.1. Security Goals

4.1.1. Decentralized, no Trusted Third Party

The worst time to find out a third party could not be trusted is when they are needed to secure
the release of documents that protect your life. This is our most important security requirement.
Decentralized systems tend to exhibit this property by preventing unwarranted updates, preventing
the suppression of updates, etc. In other words, state transitions of a system are inevitable,
predictable, unalterable and consistent.

4.1.2. Forward Secrecy

Forward secrecy is a cryptographic property that refers to the inability of anyone in
possession of past encrypted messages to decrypt them, even after entering in possession of the
private keys. In this context, this means we want to make sure whatever solution to an older puzzle
will not allow someone to decrypt a current secret.

3 In cryptography, forward secrecy is the assurance that session keys will not be compromised even if
long-term secrets used in the session key exchange are themselves compromised.

https://sarcophagus.io/

4.1.3. Time integrity

Rather than rely on the blockchain for time keeping, which may be reliable for transaction
locking, we need to remove the possibility of an offline attack, by which a miner could create a fake
branch of the blockchain, under which the unlocking conditions could happen, simply based on block
numbers. In Bitcoin, the CVLT opcode attempts to make sure blocks have not simply been added to
the blockchain but also verified. This is sufficient to prevent one miner lying to another about the
validity of a transaction, but it is not sufficient for ensuring the safety of a secret which once read by
the miner, is no longer secured. We will leverage Time Lock puzzles for this purpose.

4.1.4. Revocable

The set-up of a contract instance should be revocable. This is for a few reasons, one being
the forward security mentioned above, but also for plausible deniability purposes. Notice that this
requirement invites the possibility of a 5-dollar-wrench attack on the user, but of course there is
nothing that can be done about that. The revocability of the contract should be something that can be
configured once and cannot be changed by the user later. (Thus, an irrevocable revocability setting.)

4.1.5. Uncensorable

Revealing a secret can be dangerous. If history is a guide, a powerful entity such as a nation
state will attempt to suppress the release of information if it can. We want to provide a simple way that
only the user can delay the release of information. Decentralizing the storage of information will play a
key role for the user in ensuring the information cannot be suppressed before it is decrypted.

4.1.6. Affordable

The cost of instantiating such a system should be low. Indeed, if access to resources was
made difficult, more powerful entities could easily starve the system and prevent its use by poorer
individuals. This is therefore also a security concern for the system.

4.1.7. Low profile (few attack vectors)

The system should present few attack surfaces to prevent its use or jeopardize its stability. At
this point, the only major vulnerability will reside with the user’s initial set-up and device. Beyond the
initial set-up, fewer vulnerabilities will be found as the system will no longer rely on sensitive
communications, random number generation, or sensitive mathematical computation. By pushing the
vulnerability to the initial set-up, it becomes possible to make the choice of device and its environment
much more secure and for this to have a much bigger pay-off in terms of the overall security.

4.2. Overview

At a very high level, the Dead Man Switch consists of setting up a Time Lock Puzzle, whose
solution is only known to the user immediately after its creation, yet cannot be discovered by others
until some amount of time has expired. The user can leverage the puzzle’s solution to secure the
re-encryption of the secret into a set of private/public keys that is not yet known. This is accomplished
using a Proxy-ReEncryption (PRE) service. Ordinarily, the user can “flip the hourglass” - i.e. restart a
new puzzle and by setting a new Proxy Re-Encryption policy. The Proxy Re-Encryption service will
guarantee that only a new set of private/public keys corresponding to the new puzzle solution can be
allowed to decrypt the secret. By design, the Proxy Re-Encryption service does not require trust in a
third party and meets all of our security requirements.

But if the user does not renew the puzzle in time, the Proxy Re-Encryption service will provide
re-encryption of the secret when someone uses the puzzle solution to request access. A system of
incentives provides rewards for individuals who dedicate CPU cycles to solving puzzles. The rewards

must be funded ahead of time and constitute the only cost of using the Dead Man Switch, other than
Ethereum gas fees.

4.3. Preliminaries

The Decentralized Dead Man Switch system makes use of several common cryptographic
primitives. Since Blockchain applications routinely use Hash functions, signatures and Elliptic Curve
point operations, we will only focus here on some of the unusual mathematics involved in our system.

4.3.1. Time Lock Puzzles

Time Lock Puzzles (TLP) are a very active area of research in the cryptographic community.
Variations on the subject take the name of Verifiable Delay Function (VDF) or Delay Encryption (DE).
Interest in this primitive has grown from the need to force participants to wait in online decentralized
auction systems. The verifiability aspect refers to the ability of a participant to provide a commitment
to an intermediate result without revealing anything else. The very first instance of a time lock puzzle
was proposed by Rivest, Shamir and Wagner (RSW 1996) and is also known as the LCS35 puzzle.

In this original version, given a large integer N =Dp-q the product of two secret large safe primes

t
the puzzle consisted of computing the value Y = x? (mod N) given a random value x .
For anyone without the knowledge of the factorization of IV , this can only be done by repeated
modular squaring. Knowledge of the factorization of N provides a trap-door for computing the
solution in mere milliseconds. The parameter t provides control of the puzzle difficulty.

4.3.2. Verification and Rewards

Recent research papers by Wesolowski and Pietrzak pioneered ways to provide proof that a
RSW style puzzle has been solved. The problem they were trying to solve was that of proving that
the result of puzzle computation is correct, more efficiently than simply re-doing the work and in
environments in which one cannot afford to reveal the factorization of the modulus.

In the case of our Dead Man Switch, the result of solving a puzzle is used by possibly two
different people. First there is the puzzle solver claiming a reward for publishing the solution. Note
that claiming the reward must be a two-step process, (see section Commit & Reveal below)in which
proof of completion as a commitment is provided to ‘lock-out’ any other claimants, then providing the
solution that solves the puzzle and matches the commitment. + Second, there is the
Proxy-ReEncryption (see next section below) client who needs to use the puzzle solution to decrypt
the secrets.

There is also value in forcing puzzle solvers to show their work, to provide evidence of their
progress. First, economically, it can let puzzle solvers self-organize around the work that needs done.
Second, because preventing premature puzzle solving will be important for the Decentralized Dead

Man Switch system, the ability to monitor how fast the community of puzzle solvers can perform

repeated modular squarings will be necessary.

We have implemented Python and Solidity code for the Pietrzak VDFs proof generation and
verification, and have confirmed that it is efficient and affordable in a smart contract environment.

* Simply providing the solution ‘in the clear’ could expose the puzzle solver to cheating from other
participants, and simply granting the reward on the submission of the proof alone could not guarantee
that the solution would be made public. This method is explored in the Chained Puzzles section.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20N%20%3D%20p%20%5Ccdot%20q%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20y%20%3D%20x%5E%7B2%5Et%7D%20%5Cpmod%7BN%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20x%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20N%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20N%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20t%20#0

4.3.3. Chained Puzzles

One way to allow puzzle solvers to check-in their work for rewards is to simply create multiple,
shorter puzzles. For a year’s worth of puzzles, for example, four distinct puzzles could be generated,
lasting three months and chained, in such a way that the solution to the first one is necessary to start
solving the next one, yet, the puzzle solver can still check-in a proof that they solved the puzzle. This
method does not allow for a market in partial puzzles to develop, unless the number of intermediate
puzzles is large. This also implies that the storage on the blockchain might be much higher, a definite
drawback. This approach might be appropriate for cases when the puzzle solving is assured by
contract with BqETH for example, and intermediate puzzles are only necessary to provide sanity
checks on the work. It follows that the puzzle reward might be lower as well, making this method more
appealing to whistleblowers.

For this set-up, n random inputs Z; for n puzzle challenges are generated, and then their

t
solutions ¥i = %2 mod N are computed using the trapdoor. Then, a chain is set-up between the n
results: the solution Y1 of the first puzzle is used as a key to encrypt the second challenge T2 and so
on. The initial challenge Z1 can be released, along with the n — 1 encrypted challenges. Since the
encryption for each challenge is uncrackable, and there’'s no way to “jump forward” in repeated
modular squaring, there is no way to reach the final result faster than a single puzzle of the same
length. This technique can allow various puzzle difficulties (time parameter) to be combined, if the
time parameters are provided along with the puzzle challenges. The benefit is of course to provide
finer controls over the overall puzzle length, but also to gain visibility into how puzzle solving is
tracking with the initial estimate. Shorter chained puzzles will also provide a disincentive for puzzle
farmers to wait too long before claiming their rewards.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20x_i%20#0
https://www.codecogs.com/eqnedit.php?latex=%20y_i%20%3D%20x_i%5E%7B2%5E%7Bt%7D%7D%20mod%20%5C%3B%20N%20#0
https://www.codecogs.com/eqnedit.php?latex=%20y_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x_1%20#0

Chained Puzzles

Puzzle Creator ETH Contract Solver

lx1, H1

E2=Encrypt(X2,Y1}
Y2=Solution(X2) »| E2, H2 '—
H2=Hash(Y2)
E3=Encrypt(X3,Y2)
Y3=Solution(X3) »| E3, H3 '—
H3=Hash(Y3)

Puzzle X1,
Y1=Solution(X1)
H1=Hash(¥1)

Verify H1 1
Verity P1 3 » Y1, H1, P1

fy €
Sends Reward J ;

h 4
e ——

> X2-Decrypt(E2Y1) |

;I—)

Y2, H2, P2

Werify H2 1
Verify P2 3 »
Sends Reward J

=I X3=Decrypt(E3,Y2)

-

Werify H2
Verify P2 Y2, H2, P2
Sends Reward

4.3.4. Commit and Reveal

Because puzzle farmers must receive the rewards for their work without allowing an
enterprising Ethereum miner to substitute their own address, we must provide a way for them to prove
they are the legitimate solver of the puzzle, before providing the solution and its proof.

The way this is typically implemented is as follows. The puzzle creator initializes and
. v (@9
publishes puzzle Py X1 from some source of randomness to generate X1, and then calculates

2t
the solution S1= Xi . To generate the next puzzle P, a salted hash of the solution can be used

for the value X2 = Hash(Salt + S1) Thesaltis a public parameter. The next puzzle I3 can be
generated the same way. In addition the puzzle creator computes the hash of the solution S1 as

H, = HGSh(Sl), and then the hash of the combination of these results
Hs = Hash(Hash(Salt + S1) + Hash(S1)) = Hash(X2 4+ H1) is calculated.

Finally, 3 is submitted to the blockchain contract as a commit condition for releasing the reward.

https://www.codecogs.com/eqnedit.php?latex=%20P_1%20%3A%20X_1%5E%7B(2%5E%7Bt%7D)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S1%20%3D%20X_1%5E%7B2%5Et%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20P_2%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20X_2%20%3D%20Hash(Salt%2BS1)%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20P_3%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20S_1%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_1%20%3D%20Hash(S_1)%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_3%3DHash(Hash(Salt%2BS_1)%2BHash(S_1))%3D%20Hash(X_2%2BH_1)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20H_3%20#0

Once a puzzle solver has spent time computing the solution Sy, itisa simple matter for them
to compute Hy, X2 and H3. To claim the reward, the puzzle solver must then first submit Xo + Hy
and draw a random value r to encrypt S1,to send as E to the blockchain contract to prove they have
found a value that hashes to /3 and to lock the reward to their address.

Notice this does not reveal anything useful to competing puzzle solvers, and does not allow a
malicious miner to substitute their address to claim the reward. It also prevents a lucky guess of the
value X2 + H1 from being able to claim the reward without providing proof that they know 51 later
on. Finally the puzzle solver can submit the value r, which can be used by the contract to first decrypt
S1 from E and then confirm that the puzzle solver whose initial submission of H3 is indeed the one

deserving the reward, by computing Hy, X, H3, allowing a new transaction to credit the puzzle
solver with the reward.

Commit & Reveal

Puzzle Creator ETH Contract Solver
Puzzle 1
By » P1 '74,{ P1

Phi

Solution 1
51
H1 = Hash(S1)

X2 = Hash(Salt+51)

H3 = H(X2+H1)

Hi, X2, H3
E=Encrypt(S1.r)

[Verify H{X2.+H1) == H3]

Confirm Lock Challenge R Lock Confirmed

S1=Decrypi(E.r}
Verify -
Submit
H{Salt+51) == X2 :
H({X2+51)==H3
Verify proof

v

Grant Reward ‘

10

https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20H_1%2C%20X_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20H_3%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20X_2%2BH_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_3%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20X_2%2BH_1%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20S_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_3%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_1%2C%20X_2%2C%20H_3%20#0

Because the puzzle solver does not have to submit S1 immediately after submitting Hj, they

can gain a head start on all other puzzle solvers who will learn of X2 as the reward is claimed. Of
course, if they wait too long, they may be preempted by a different puzzle solver with the correct
solution. A malicious Ethereum node has no way to ‘grab’ values from the requests to claim the
puzzle solution for themselves. They do not know S1 and therefore cannot manufacture a value of F

that will yield S1 until the legitimate puzzle farmer has submitted r to the network allowing the
contract, and anyone listening including the malicious miner, to decrypt S1 from E .

4.3.5. NuCypher

NuCypher is a Decentralised Proxy-ReEncryption service. The concept of
Proxy-ReEncryption (PRE) is shown below, with a diagram from NuCypher’s white paper.

Information encrypted for Alice using her public key PkA can be re-encrypted by a Proxy
agent into a version that can only be decrypted by Bob, using his secret key skp .
There are three important things to remember about Umbral, the fundamental building block for
NuCypher:
e The Proxy can only re-encrypt if it is given some re-encryption key rkap by Alice.
e The Proxy is never in possession of a decrypted version of the document.

e Alice must have access to Bob’s public key pkp .

Proxy

ca = encrypt(pka, m) o cp = reencrypt(rka_p,ca)
£ g= gt

o) O
m o m

Alice Bob
(ska,pka) (skp.pkp)

In the NuCypher decentralized system, the Proxy is actually a network of independent entities -
referred to as Ursulas, who will store a piece of the threshold (m of n) re-encryption key

rkap fora period of time specified by Alice. The relationship is described by a PRE policy, that
specifies the duration, threshold parameters and of course the participant Bob from his public key.
The policy can be revoked or will expire.

Because the network of Ursulas is comprised of nodes worldwide who stake a significant
amount of NuCypher tokens to earn more tokens by performing accurate work, as well as because
they stand to lose their stake if they fail, forget, lie or collude, the system can be trusted to perform
this function extremely well. The Ursula nodes must be paid with ETH, in direct proportion to the
number of nodes required by the threshold parameters, and in proportion to the number of days in the
policy. The Decentralized Dead Man Switch will leverage this framework to bind the solution of a
puzzle with a PRE policy.®

5 At the time of this writing, NuCypher is undergoing a merge with Keep to become the first ever
blockchain merger of two projects, under the name of Threshold Network. The PRE system will
remain in place, with minor improvements.

1

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20S_1%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_3%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20X_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E%20#0
https://github.com/nucypher/whitepaper
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20pk_A%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20sk_B%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20rk_%7BA%20%5Crightarrow%20B%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20pk_B%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20rk_%7BA%20%5Crightarrow%20B%7D%20#0
https://threshold.network/

4.3.6. ChainLink VRF

The initial set-up of the Decentralized Dead Man Switch will require numerous random
numbers to be generated, to initialize parameters such as Elliptic Curve points for private keys and
composite modulus generation from random primes, as well as an initial puzzle input. Beyond this
initial set-up however, a new random number will be necessary every time the puzzle is replaced, as
the proof of life is being provided. Because random number generation has historically been a point
of vulnerability, especially on devices that may be compromised, we have decided to leverage the
on-chain random number generation provided by ChainLink’s Verifiable Random Function .

This operation is costly, but will provide the certainty that a random number is truly
unpredictable. Further transformation of the random number will allow the Decentralized Dead Man
Switch to formulate a puzzle that cannot be predicted in advance. This is important as the threat of
puzzle prediction is at least as important as the threat of modulus factorization, given that the puzzles
may involve long time periods.

4.3.7. IPFS

We anticipate that the storage of secrets will be relegated to the Inter Planetary File Systems
(IPFS) or similar decentralized storage. It is outside the scope of this paper to discuss IPFS in detail,
but one important thing must be mentioned: IPFS replication is not guaranteed. Documents never
leave the user’s device until another user requests the document by its hash. Therefore, provisioning
of such replication will need to be planned before the guarantee can be made that a secret can be
accessed post mortem. There too, a prearranged commitment can be made with BqETH to guarantee
some level of replication.

Implementation

At the core of the system, an Ethereum smart contract will manage the publishing of puzzles, their
configuration including the required intermediate checkpoints and difficulty, the allocation of puzzle
rewards, verification of solutions and unlocking of rewards, as well as storage of auxiliary information
such as IPFS links.

A Web3 application, capable of linking to wallets such as Metamask will provide the interface for users
to perform the initial puzzle creation, as well as the set up of public parameters for their instance of
the contract, including funding of puzzle rewards. Because at the moment, funding of NuCypher policy
management can only be done by communicating directly with Ursula nodes, and with the NuCypher
Policy Manager contract, the application will also need to communicate with the NuCypher network,
as well as the Polygon network for payment. ©

We will refer to a user’s Ethereum address as their account, while referring to their active invocation of
the contract as their instance.

51. User level secrets

At the core of a user’s puzzle generation is the prime composite N, product of two safe
primes. From the analysis of VDF research papers, a minimum security parameter of 1127 will be
used, implying that N should be at least 2048 bits. Recent research recommendations relating to the
generation of large prime numbers in adversarial environments, will be included in the Web3
application so there can be no leakage of the factorization.

% Version 6.0 of NuCypher’'s PRE introduces a Level 2 payment rail on the Polygon network, which
allows for cheaper policy creation. Further improvements include the Porter proxy layer to decouple
applications who do not want to connect directly to the Ursula nodes.

" From the NIST recommendation. Section $5.6.1
https://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

Also https://www.keylength.com/en/4/ .

12

https://docs.chain.link/docs/chainlink-vrf/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://www.keylength.com/en/4/

The factorization of N can be discarded after the computation of the totient factor) has been
calculated, encrypted and saved along with N in the public parameters. This will ensure the user
application can always re-use the trap door to the solutions without requiring any subsequent storage.

5.2. Secret Encryption

We have not yet discussed the primary purpose of the Decentralized Dead Man Switch, which
is to secure a secret. This secret, a short testament for example, a phrase allowing the decryption of
more secrets stored on a decentralized file system, or a token whose hash can unlock a Bitcoin P2SH
transaction®, will be encrypted using the NuCypher policy’s public key, which is associated with the
user’s Ethereum wallet. The Ethereum contract will provide limited storage for such a secret and
enough to also provide a location for larger documents. In this encrypted state, only the user will be
able to decrypt the secret, using his or her NuCypher private key.

5.3. Puzzles

5.3.1. Generation

As explained in Preliminaries, puzzle generation will involve picking a random seed s, which
will allow the creation of the first puzzle. The initial puzzle generation is assumed to occur under
controlled conditions such that the randomness of the first value is not a concern. The next puzzle
however, might be generated under less ideal or friendly circumstances. For this purpose, a setting in
the contract and in the application can leverage the ChainLink Verifiable Random Function (VRF), a
random beacon, or alternatively the Keep random beacon facility, to issue a public, yet unpredictable
random value. Details of the puzzle generation are provided in our White Paper.

5.3.2. Difficulty Adjustment

Standard difficulty values could be adjusted in the published contract for common time
frames, such as 1 month, 3 months, 1 year, so that a standard value can be ‘picked up’ by the
application from the blockchain with no interaction with BqETH. The parameter t will be adjustable by
each user within their instance, and in the contract by BQETH, with the constraint that it can only be
adjusted upward by BqETH. This is to avoid the possibility that a State actor could pressure the
BqETH to shorten the life of the next puzzle for users using default values. With this framework, if the
puzzle solving community finds faster ways to solve puzzles, the expected solving time can be
maintained for every user’s next puzzle. For more drastic changes in solving speed, notifications to
“flip the hourglass” - i.e. restarting a new puzzle and setting a new policy - sooner than expected can
be arranged with BqETH.

5.3.3. Puzzle Verification

Puzzle verification will proceed as described in the Preliminaries section. There is little more
to add here. The contract will hold a temporary ‘lock’ on any Ethereum address which successfully
submits the correct X2+H1 combination that Hashes to H3. The puzzle solver will then be able to wait
as long as they wish to claim their reward. However, knowing someone else who might have
completed the work could still claim the reward will motivate every puzzle solver to claim theirs as
soon as possible.

8 Careful planning will play a large role to ensure such transactions are not accidentally invalidated by
the user by spending the UTXOs linked to the P2SH transactions. Similar

13

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cphi%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20s%20#0

5.4. Proxy ReEncryption Policy

541. Network Access

During the initial set-up and every time the puzzle is replaced, in addition to a web3 call to an
Ethereum network provider, the application needs to access the NuCypher network. In the current
architecture, this network will provide Ursula nodes from whom the application can learn from other
nodes. Once this is properly established, a request to issue a policy can be issued, and accepted by
a number of Ursula nodes. Invocation

At the core, a simple Proxy-ReEncryption policy will be requested and issued by the
NuCypher network. The application will not issue an Ethereum network request to publish and
activate a new puzzle until this is complete. The choice of PRE threshold parameters m and n will be
left to the user with advice from BQETH on how to select them.

5.4.2. Revocation

When the user decides to ‘flip-the-hourglass’ and create a new puzzle, after the new policy
has been issued and before the new puzzle is published to the contract, the obsolete policy will be
revoked. A certain buffer of time will be factored into each policy such that enough time is allocated to
account for a lack of incentives in puzzle solving that make its expected solving time greater than
average, but not so much that it is paying for Ursulas to keep secrets active past the expected length
of the puzzle. The buffer size and reasonable limits will be built in the application to prevent major
problems.

5.5. Reward Management

5.5.1. Reward Escrow

We expect that the Ethereum contract will be holding ETH tokens in escrow on behalf of its
users, to be dispensed for puzzle rewards in the amount specified by users. Monitoring will alert
BqETH of accounts whose escrow amount is running low so that it can provide an alert service to its
clients. Functions in the contract’s API will allow users to contribute to the escrow fund of any
instance. This means a user wishing to remain anonymous can obfuscate the origin of their funds.
Withdrawing funds from the escrow will of course be restricted to the original owner of the instance
and to funds not already allocated to active puzzles.®

5.5.2. Reward Allocation

Reward allocation is initially set by the user on a per-puzzle basis. Depending on the
configuration, as advised by BqETH, some users may choose to reward puzzle farmers in proportion
to their demonstrated work, or not at all. In all cases, the remaining unclaimed reward amount will be
dispensed to whoever can prove they have arrived at the last puzzle solution. A discussion of
whether a puzzle reward should be adjustable should lead one to conclude it should not. It should be
obvious that the mere ability of adjusting it lower would destroy the incentives of puzzle solvers.
Likewise the ability to adjust it higher is only a binary incentive: if the puzzle is already being solved, it
does not affect the expected solving time by much'®, and if the puzzle is not actively worked on, it
does not provide assurance it will. In both these cases, the user can leave the reward for long-tail

® Once the user has flipped the hourglass and published a new puzzle, older puzzles remain active
until their reward has been claimed, yet they can no longer provide access to proxy re-encryption.
1 Some very smart people are working on ways to make repeated squarings much faster using
ASICs, creating a ‘solving gap’ between off the shelf computers with spare cycles and dedicated
hardware. Higher rewards may only affect the decision to use such hardware for some puzzle
farmers.

14

puzzle farmers who will dedicate old and slow hardware to collect the reward, while simply ‘flipping
the hourglass’ and spending a little extra on the next puzzle reward.

5.6. Interaction

5.6.1. Web3 Application

We envision a simple Web3 application for mobile devices, allowing a user to check on the status of
their current puzzle and the date by which they are expected to ‘flip the hourglass’. With a desktop
application available for in person training and setup, more secure hardware may be employed so that
the initial prime number generation is more secure, reliable and free of interference.

All applications will be open-source and audited by BqETH.

The user application, because security is very important, will feature a minimal interface
allowing very few customizations and exposing very few parameters. Its function will be to simply
provide a status so the user can check progress toward solving their last active puzzle, an estimated
date by which the puzzle should be switched (by flipping the hourglass) and perhaps few other
notifications for clients of the monitoring services.

5.6.2. Wallet Integrations

Since funding of the Puzzle Reward Escrow of each contract may be performed from any
address, an application integration with a standard software or hardware wallet will be important to
allow a smooth operation of the contract invocation, NuCypher network interactions and reward
funding.

5.7. Workflow

This section gives a visual representation of the workflow and interactions between the
Application, the Ethereum Contract, the NuCypher network and Puzzle Farmers. Using the blue
numbers in the pictures below, we can walk through the various moving parts and their roles:

15

Crypto Owner Ethereum IPFS NuCypher | Heir Big Brother Puzzle Farmers

BqETH

I
Initial Contract Use

Encrypted
estate
secrets

2

ek

N S

4.

5.

» Set up includes, p, g

» Calculates N, ¢

+ Sets up first puzzle PP1 from ¢

+ Computes first puzzle solution S;
« Sets up PRE policy using sk & S
» Funds the contract bounties

= Sets up verification hashes

cypher

Proxy

¥ Re-Encryption
—S5 =
4 :8: sk prk 5 Solves Puzzle
T Get Current Puzzle » tounderstand
threat
Solves Puzzle For
Reward
Dead Man

Switch Contract

cypher

~

In the initial setup phase, the user has a secret key (sk) and public key (pk) pair that will allow
them to use the Ethereum contract. Some symmetric encryption key (ek) is chosen by the
user to encrypt their secrets.

Using their device, the user will pick random large safe primes p,q to obtain N and 0y They
will also pick a random number to create the first puzzle Pi. The encryption key ek is also
encrypted using the user’s private key pk, which yields a cypher (message-kit). The Puzzle
solution 51 is also calculated privately.

From the application, connectivity with the NuCypher Network is initiated and a PRE policy is
set up to allow re-encryption into a public key defined by S1. Because the policy is linked to
the puzzle solution, effectively no-one can currently request re-encryption of the cypher until
the puzzle is solved.

The final setup step is for the user to call the Ethereum contract and publish the puzzle
challenge, along with the rewards for it.

The puzzle is then ready for solving and anyone can request the parameters of the challenge.

In the next picture, we examine what happens during the lifetime of this contract, and the workflow
that takes place to ‘flip the hourglass’, substituting both puzzle and policy.

16

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cphi%20#0
https://www.codecogs.com/eqnedit.php?latex=%20P_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0

(3]

[=)}

Bl I

Pings the contract
for proof of life: flips
the puzzle & policy

<

Revokes first PRE policy

Sets up new puzzle I from ¢, r
Computes new puzzle solution 5y

Sets up new PRE policy for S»
» Adjust the contract puzzle, bounties

§-E |
P >P'>8Sy J
7
(4 H‘
8
cypher
Dead Man

Switch Contract

Lifetime Ping]

Proxy
Re-Encryption

Re-Encryption

9

x

| Re-Encrypt’cypher

6 Months to
solve puzzle

prk

10

9 Menths to
solve puzzle

prk

?

Commit & Reveal

Congratulatio

11

——— —Get Last Solution (ek1)— |

. prk

Solves Puzzle For
Reward

by

ns, here is the reward:

PR wrong key

6. In this step a new puzzle [z is created and its solution 2 is calculated.
7. The NuCypher network is once again contacted, to cancel the old re-encryption policy as well

as to establish a new one, allowing re-encryption from sk to prk’ defined by Sy

8. The new puzzle P s published to the Ethereum contract as the new ‘active’ puzzle.
9. This flow illustrates that the NuCypher Network will at this point deny re-encryption to anyone

presenting the correct credentials prk, derived from the old puzzle solution S,

10. Solving the older puzzle still allows a puzzle farmer to contact the Ethereum contract to claim
their Ethereum reward.
11. The puzzle solution does not help a greedy heir to obtain access to the documents.

The final illustration shows what happens when the user passes.

17

https://www.codecogs.com/eqnedit.php?latex=%20P_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20P_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0

H End of Life scenario
hdl

Pings the contract
for proof of life: flips
the puzzle & policy 12 Proxy

Re-Encryption
&K
k k" Solves Puzzle
e O ° " to understand Solves Puzzle For
Po> 55 ! threat Reward
AN / :8: Get currelnl puzzle

Solves Puzzle
in 6 Months 7

Dead Man

Switch Contract
Solves the puzzle

? in 9 months

pri"

?

- Commit & Reveal Claims Reward
Awara |
. :
I

13
? » Legitimate Heir
prk" cypher Legitimate Heirs
Proxy
A / Re-Encryption

12. Assuming the last puzzle P3 has been properly generated, its solution S3 has been used to
generate a policy and interested parties are actively working on solving the Time Lock Puzzle.

13. Because the user dies and is unable to flip the hourglass’ one last time, some puzzle solver
will be able to claim the puzzle reward and in doing so, reveal the puzzle solution. At this
point anyone can access the policy and request of NuCypher that the cypher be re-encrypted
into the public key, defined by the puzzle solution S3. Thus in this case, the

Proxy-ReEncryption will re-encrypt the cypher for key prk” allowing anyone to decrypt the
symmetric key ek.

Clearly, for most secrets, other information will be used as blinding factors to only allow certain
participants to access the secrets. For example, instead of encrypting the secrets with ek, a private
salt only known to the intended recipients could be used, thus preventing everyone from decrypting
them.

5.8. Monitoring

This section discusses things that should be monitored, by BqETH or others. Many parameters,
suggested by the application and perhaps enforced by the contract will vary. A compromised app
may choose to ignore such parameters and therefore some reasonable limits will need to be
implemented in the contract. For example, we can force the contract to only increase its estimates of
the values of t necessary to create 3-month puzzles, and so on for longer durations. We know this
because the computing power is not expected to ever fall.

18

https://www.codecogs.com/eqnedit.php?latex=%20P_3%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_3%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_3%20#0

5.8.1. Puzzle Farming

Puzzle farming will need monitoring in several ways. First and obviously, the ‘best of breed’ solving
speed will be available from the expected duration of puzzles compared with the actual check-in
times. Another important metric will involve the expected check-in times against the actual check-in
time of puzzle solvers. This may provide insight into how much computing power is made available
and switched in order to discourage other puzzle farmers. A recent paper suggests such repeated
squaring markets may become decentralized as well, providing better insight into both costs and
expected performance at a global level.

5.8.2. Expiration Notifications

When a puzzle is nearing completion and if the user is alive, it becomes important to ‘flip the
hourglass’ to protect the secrets. Another option is to simply cancel the PRE policy without
re-generating the puzzle, effectively canceling the contract. Finally a more drastic option of course is
to rug-pull the information that is being protected. In all cases however, the Ethereum blockchain, as a
public ledger, will provide insight into how many and which of these puzzle contracts face imminent
solving. Such cases can be handled by BqETH for its customers, and attempt to locate or notify
them. As a service, BqQETH can assist in recovering the secrets locked by the policy, before it expires,
for the benefit of heirs and interested parties.

5.8.3. NuCypher

Monitoring of the health of the NuCypher network will also become important if more
resources must be dedicated to providing a reliable service. Also, monitoring of the NuCypher policy
parameters m and n will inform future users on how to balance their security with the costs associated
with setting up the policy.

5.8.4. Reward pricing

Another metric that may prove useful is the amount of ‘actively worked puzzles’ so that advice
can be produced to reduce the number of outpriced puzzles that generate little interest from puzzle
farmers. Monitoring the number of puzzles actively being solved and their rewards will provide insights
into the supply and demand curves of the ecosystem, to advise users on what rewards are
appropriate for each length of time. The prices will depend on the supply and demand of puzzles as
well as the opportunity costs of tying up a CPU Core, and of course, the value of the rewards against
other crypto currencies.

5.8.5. Escrow Alerts

Monitoring the escrow balances will also provide insights that will be useful to BQqETH to alert
its customers who need to fund their contract. Extracted from publicly available information on the
Ethereum blockchain this information will be available for any user, including anonymous users.

5.8.6. PRE Policy Mismatches

The two edge cases detailed in the improvement sections will also lead to monitoring of how
often puzzles expire before the PRE expires as well as how often a PRE policy expires without the
puzzle being solved. The product of this monitoring will inform users and BqETH how to adjust certain
buffer parameters between the puzzle expected expiration and the policy expiration.

5.8.7. IPFS Replication Gaps

Because some users will want to store lots of information, in sizes that do not belong on the
blockchain, both for cost and forward security reasons, a free form field will be provided in the contract
for a link to information stored on IPFS, FileCoin or similar service.

19

https://status.nucypher.network/

7.

BqETH can effectively monitor the existence of replicated versions of the encrypted files, for
some of its customers. In addition, it can detect that replication gaps have occurred and notify their
customer or prevent such gaps from occurring by replicating them further. As discussed in other
sections, there is a case to be made for the information to be located in various geographies.

5.8.8. BgETH Puzzle Farming

We envision BqETH will embrace Puzzle Farming as an open and profitable source of
revenue for itself, at least until a competitive market develops. For its clients, BqETH may offer the
guarantee that a puzzle is always being solved, to ensure their heirs will always be able to access the
decrypted information. This offer can also come with the assurance that the puzzle will be solved in
locations around the world that are appropriate to the sensitivity and maturity of the puzzle. In the
event that the puzzle is solved by BqETH, an arrangement to refund a portion of the puzzle reward
toward the escrow may be a possibility.

Conclusion

There are several business opportunities that arise from this work. First is the creation of a
reliable and decentralized system for a digital deadman’s switch.

Consulting and teaching opportunities exist in the setup phase of the dead man switch use. This
includes the business opportunity of inheritance planning for use of the system. It also includes the
coaching of heirs in the use of the system post mortem. A substantial source of revenue can also
come from Estate Attorneys’ continuing education requirements.

A second business opportunity consists of providing services to clients wishing to be notified
of expiring puzzles, reward escrow levels, suggested set-up parameters, file replication, puzzle
solving guarantees and other details relevant to their particular set-up.

Finally, some revenue may come from the collection of puzzle rewards, at least initially, since
BqETH will have an interest in engaging in puzzle farming to provide the system with stability and
security until external actors figure out it is profitable.

In order to make these business opportunities accessible, even though the software will of
necessity be largely open source, the new company will offer classes both in group settings and to
solitary students (in person or online) and consultations to make sure the setup is properly
implemented.

References

Casa: Comprehensive Bitcoin Inheritance

Goldin, Mike. Dead Man Switch https://aithub.com/skmgoldin/dead-mans-switch
Ronak, Doshi Whistle https://github.com/Ronak-59/Whistle-

Seres, Shlomovits and Tiwari: CryptoWills. https://eprint.iacr.org/2020/283.pdf
Whineman, John: Living Proof https:/github.com/jwineman/livingproof

Zhang, Daian, Bentov. Paralysis Proofs._https://eprint.iacr.org/2018/096.pdf

Rivest, Shamir, Wagner. Time-lock Puzzles and Timed-release Crypto (1996)

Pietrzak. Simple Verifiable Delay Functions (2018)

Boneh, Bunz, Fisch. A Survey of Two Verifiable Delay Functions (2018)

O Attias, Vignery, Dimitrov. Implementation Study of Two Verifiable Delay Functions (2020)

—‘<°.°°.\‘.°7.U‘P‘.‘-°.N.—‘

20

https://keys.casa/bitcoin-inheritance-plan
https://github.com/skmgoldin/dead-mans-switch
https://github.com/Ronak-59/Whistle-dApp
https://eprint.iacr.org/2020/283.pdf
https://github.com/jwineman/livingproof
https://eprint.iacr.org/2018/096.pdf
https://www.cerias.purdue.edu/apps/reports_and_papers/view/981
https://eprint.iacr.org/2018/627.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/VDFsurvey.pdf
https://eprint.iacr.org/2020/332.pdf

