
White Paper 2.0
A Decentralized Dead Man Switch

For Digital Asset Inheritance.

J.D. Bertron
November 2023

1. Introduction 3
2. Market Need 3
3. Previous Work 4
4. Model 5

4.1. Security Goals 5
4.1.1. Non Custodial 5
4.1.2. Decentralized, no Trusted Third Party 6
4.1.3. Forward Secrecy 6
4.1.4. Time integrity 6
4.1.5. Revocable 6
4.1.6. Uncensorable 6
4.1.7. Affordable 6
4.1.8. Safe 6
4.1.9. Private 7
4.1.10. Low profile 7

4.2. Overview 7
4.3. Preliminaries 7

4.3.1. Time Lock Puzzles 7
4.3.2. Verification and Rewards 8
4.3.3. Chained Puzzles 8
4.3.4. NuCypher 9
4.3.5. IPFS 10

5. Implementation 10
5.1. User level secrets 11
5.2. Main Secret Encryption 11
5.3. Puzzles 11

5.3.1. Generation 11
5.3.2. Difficulty Adjustment 11
5.3.3. Puzzle Verification 12
5.3.4. Commit and Reveal 13

5.4. Condition Based Threshold Decryption 15
5.4.1. Network Access 15
5.4.2. Condition 15
5.4.3. Renewal 15
5.4.4. Revocation 15

5.5. Reward Management 15
5.5.1. Reward Storage 15
5.5.2. Reward Allocation 16
5.5.3. Decryption Reward 16

5.6. Interaction 16
5.6.1. Web3 Application 16
5.6.2. Wallet Integrations 17

5.7. Workflow 17
5.7.1. Setup 17
5.7.2. Recurring Interaction 18
5.7.3. Secret Replacement 19
5.7.4. Delivery Replacement 19

1

5.7.5. Notification Replacement 19
5.7.6. End of Life 19
5.8. Monitoring 20

5.8.1. Puzzle Farming 20
5.8.2. Expiration Notifications 20
5.8.3. NuCypher 20
5.8.4. Reward pricing 21
5.8.5. IPFS Replication Gaps 21
5.8.6. BqETH Puzzle Farming 21
5.8.7. Test Mode 21

5.9. Stability 21
5.9.1. Farming 21
5.9.2. NuCypher 22

6. Improvements and Future work 22
6.1. Quantum resistance 22
6.2. Biometric Device Integrations 22
6.3. Wallet Abstraction Integration 23
6.4. Wallet Tech 23

7. Conclusion 23
8. References 23
9. Appendix 25

Euler Totient Function’s Trapdoor. 25
ElGamal Encryption 25

2

1. Introduction
In this paper, we introduce a new method for implementing a blockchain based Decentralized

Dead Man Switch that allows for a piece of information, known only to its creator, to be released freely
to anyone upon their death. The method leverages a smart contract on the Ethereum blockchain to
maintain and publish a time lock puzzle that can be replaced at any time by the user. The puzzle,
when solved, will allow anyone to decrypt the information it conceals. The system requires a minimal
setup from the user, with the help of an open-source Web3 application. It also requires funding of the
contract instance to incentivize puzzle solving by disinterested parties.
The paper is organized as follows: The Market Need section discusses the types of applications this
system can enable and provides insight into the various ways it can be used. In section Previous
Work we discuss previous attempts to provide similar functionality. The Model section discusses the
overall architecture of the system and the external components involved. In Preliminaries, we go over
terminology and fundamentals that will be used in the paper. Subsection NuCypher in particular,
discusses one of the major external dependencies of this system. Finally the Implementation section
discusses in detail how the system functions. A short discussion of Improvements and Future work
then precedes the Conclusion and Appendix, which contains some of the mathematical proofs for
reference.

2. Market Need
The search for a dead man switch technology has a long history. Recently it has become

more important than ever to find one that can act as a canary for whistleblowers, protect people in
oppressive regimes who want to secure information that might deter someone from murdering them or
suppressing their work, or simply allow someone’s life-long secrets to be revealed upon their death.

A market study can probably reveal the price people might be willing to pay to avoid trusting a
third party with their crypto currency assets and the complexity of setup they would endure to put in
place multi-signature wallets. Several companies have emerged to answer this demand, for example
https://endowl.com/ or https://fortknoxster.com/ . These companies have not published details of their
approach, and it is unlikely they have solved the problem of decentralized trustless inheritance.

Additionally, with crypto currency asset ownership on the rise, it is legitimate to wonder what
would happen if a large portion of them will remain dormant, lost forever, should their owner die. For
example, before year 2030, the number of new Bitcoin blocks mined per year will dwarf significantly
the number of bitcoins already mined, thus if a significant portion of these assets are lost when their
owners die, the overall quantity of Bitcoins contributing to liquidity will shrink - an effective deflation of
the supply.

3

https://endowl.com/
https://fortknoxster.com/

In this scenario, what will remain of the incentives to use the currency as a store of value,
what would happen to society and the world economy, absent the possibility to bequeath those assets
in a decentralized, uncensorable and disintermediated fashion.

In its simplest form, the Decentralized Dead Man Switch simply allows information to be
encrypted until some work is performed to unseal the secret. It should be evident that although a large
secret can be locked in this manner, it is sufficient for most purposes to simply lock a small secret
which can grant access to a much larger store of information. In recent history, for example, software
businessman John McAfee claimed to have information implicating corporations and politicians,
protected by a Dead Man Switch, yet the information was never found. It is also clear that other
famous whistleblowers1 might have benefited from such a technology. One can also speculate
whether journalists might be looking for such a technology to prevent suppression of their
investigations.

In her popular book, “Crypto Asset Inheritance Planning”, Pamela Morgan warns that relying
solely on a smart contract based mechanism is ill advised, and we agree. A digital dead man switch is
simply a new, storage location option to secure data into the future, which must be part of a broader
strategy.

3. Previous Work
The following review is not chronological. A simple attempt to create a smart contract that can

lock-up a certain amount of ERC20 tokens has been attempted by Mike Goldin, the creator of Token
Curated Registries (TCR). The ERC20 tokens are locked in the contract, only allowing the user
access to them. The concept is simple, but does not allow much secrecy about the amount of tokens
stored, and in fact does not allow any secret to be locked. Also a beneficiary must be designated in
advance, which introduces a vulnerability. The project is a proof of concept that could scale for
multiple users but has not been developed beyond that stage. Ronak Doshi and others proposed
Whistle, a Web3 App designed to assist Whistleblowers, during the 2018 EthIndia hackathon. The
application is leveraging the smart contract to store NuCypher policy aliases per users, but it is
unclear how the information is protected from early decryption, or if the decryption flow has been
properly implemented.

John Wineman, a participant at ETHDenver 2020 contributed a Solidity smart contract
designed to provide censorship resistant attestation named Living-proof. The contract functions as a
canary and is only meant to keep track of a user’s last invocation of the contract. If the last proof of life
is older than a certain number of block intervals, any external user is allowed to invalidate it. The
contract has a concept of a reward it calls a Pinata, for whoever invalidates the last proof.

On the research side, several interesting solutions have been proposed. In Paralysis Proofs,
Zhang, Daian and Bentov propose to use a smart contract to restore multi-signature access to a
bitcoin wallet when one member of a multisignature group goes missing. Participants can challenge
one of the group members to prove they are ‘alive’, causing a special participant that runs on an Intel
SGX trusted computing platform, to issue two new transactions that will be signed by SGX. One
transaction is small while the other is designed to be invalid until a later time. This is supported by
newer P2SH Bitcoin OpCodes CVLT and CVT. The small transaction can be spent immediately by
the party that is challenged and that transaction invalidates the other. The system has limitations we
would prefer to avoid. First the system only supports Bitcoin. Second it requires a trusted
implementation to run on Intel SGX which holds all the keys as a trusted third party.

Another solution was proposed by Seres, Shlomovitz and Tiwari and named CryptoWills. The
system leverages a Trusted Execution Environment (TEE) similar to SGX to perform computation of a
Time Lock Puzzle to release the TEE from needing an external source of time. Use of Multisignature
Bitcoin instructions then allows release of Bitcoins to beneficiaries.

1 Julian Assange, Chelsea Manning, Seth Rich, Gary Webb, Edward Snowden.

4

On the commercial side, a Bitcoin Inheritance solution has been advertised by Casa. The
system is a legal escrow service that leverages up to 3 out of 5 multisignature control of a Bitcoin
Wallet (a less expensive variation uses 2 out of 3 multisig control). There is no support for other
blockchain assets or for secret keeping. Casa announced support for Ethereum in 2023. Other
companies, such as FortKnoxter, Vault12, SafeHaven, SerenityShield and BeQuest have all proposed
solutions for crypto asset inheritance leveraging multisignature, social recovery and at times the use
of block-time to gate access, all with some kind of centralization of control.

Finally a service named Sarcophagus.io, claims to have created a decentralized dead man
switch for the purpose of providing inheritance of crypto assets. While much better designed than
other solutions above, the system relies on multiple server nodes, ‘archeologists’ having control over
the decryption of the payload and trusted to determine the conditions for decryption. Besides the
vulnerability this creates if the ‘archeologists’ could be compromised, or coerced, it is unclear what
technological barriers exist to prevent early decryption. The Lite Paper discusses at length the cute
terminology choices that help convey the concepts, but does not touch on the subjects of time
keeping, trust relationships, forward secrecy or resilience. The system also relies on bounties
awarded in the form of an ERC20 Token whose long term value is questionable. Early in 2023,
Sarcophagus changed their design to make use of Shamir Secret Sharing to remove the single node
vulnerability.

In the next section, we will set out the goals of our system and provide an overview of our
approach, which avoids all the pitfalls of previous solutions.

4. Model
In the real world a Dead Man Switch is a device that constantly monitors the presence of

stimulus from a person, in order to leave the state of a system intact. You can see them on power
tools or exercise equipment. Often in movies it goes beyond the simple kill-switch application, in which
the activation may cause a third party to regret interfering. The result may be an explosion, or the
release of embarrassing documents.

In the digital world, everything can be copied however, and it is difficult to imagine how
forward secrecy2 can be maintained for secrets, long after private keys may have been revealed.
Because blockchains are public ledgers, it is also unreasonable to expect a secret to be ‘kept’ locked
inside a contract, since any curious miner or nation state is sure to be looking for it there.
Getting an accurate sense of time is also a challenge, which is exacerbated by the blockchain
environment since every miner may have their own local time. This has been mitigated by the use of
block-height, in some smart contracts and supported by blockchain opcodes, to prevent miners from
cheating by chain spoofing or simulating a future time.

We will first establish the security goals that have been considered, then provide a high level
overview of the operation of the Dead Man Switch.

4.1. Security Goals

4.1.1. Non Custodial

BqETH does not want to hold your keys. We don’t and any solution that does is a security
risk, to you, to us and to your beneficiaries. It is also often a source of misunderstanding. So it is worth

2 In cryptography, forward secrecy is the assurance that session keys will not be compromised even if long-term
secrets used in the session key exchange are themselves compromised. In section Revocation we discuss our
solution to this elusive problem.

5

https://keys.casa/bitcoin-inheritance-plan
https://sarcophagus.io/

repeating it. The BqETH blockchain contract does not hold, dispense, mix or otherwise control any of
your crypto assets or keys. In fact we don’t want to know what is locked up in your dead man switch
because this makes us a risk.

4.1.2. Decentralized, no Trusted Third Party

The worst time to find out a third party could not be trusted is when they are needed to secure
the release of documents that protect your life. This is our most important security requirement.
Decentralized systems tend to exhibit this property by preventing unwarranted updates, preventing
the suppression of updates, etc. In other words, with blockchain technology, state transitions of a
system are inevitable, predictable, unalterable and consistent.

4.1.3. Forward Secrecy

Forward secrecy is a cryptographic property that refers to the inability of anyone in
possession of past encrypted messages to decrypt them, even after entering in possession of the
private keys. In this context, this means we want to make sure only the last secret a user encrypted
should be decryptable.

4.1.4. Time integrity

Rather than rely on the blockchain for time keeping, which may be reliable for transaction
locking, we need to remove the possibility of an offline attack, by which a miner could create a fake
branch of the blockchain, under which the unlocking conditions could happen, simply based on block
numbers. In Bitcoin, the CVLT opcode attempts to make sure blocks have not simply been added to
the blockchain but also verified. This is sufficient to prevent one miner lying to another about the
validity of a transaction, but it is not sufficient for ensuring the safety of a secret which once read by
the miner, is no longer secured. We leverage Time Lock puzzles for this purpose.

4.1.5. Revocable
The set-up of a contract instance should be revocable. This is for a few reasons, one being

the forward security mentioned above, but also for plausible deniability purposes.

4.1.6. Uncensorable
Revealing a secret can be dangerous. If history is a guide, a powerful entity such as a nation

state will attempt to suppress the release of information if it can. We want to provide a simple way that
only the user can delay the release of information. Decentralizing the storage of information plays a
key role for the user in ensuring the information cannot be suppressed before it is decrypted.

4.1.7. Affordable
The cost of instantiating such a system should be low. Indeed, if access to resources was

made difficult, more powerful entities could easily starve the system and prevent its use by poorer
individuals. This is therefore also a security concern for the system.

4.1.8. Safe
The safety of beneficiaries, recipients of the payload, has often been overlooked by previous

solutions. Securing the payload while leaving the wallet identities of the people designated to receive
them, for many years, in plain sight, or in the hands of vulnerable companies that can be pressured to
reveal their identities, is a very significant threat. It should be obvious that with many years to prepare

6

an attack on an unsuspecting beneficiary, this can become the path of least effort in many threat
models.

4.1.9. Private
Privacy is an important security goal which is often possible but difficult in many cases for

Decentralized Applications. This goal should be to provide at least as much privacy as can be
afforded by the blockchain, or better. Practically, this means that in view of the traceability of
blockchain transactions on the Ethereum blockchain, no private information should be available in the
contract state or transaction details.

4.1.10. Low profile

The system should present few attack surfaces to prevent its use or jeopardize its stability. In
the Improvements section we will discuss areas of concern and obvious improvements that could be
made in the future to further reduce the vulnerability of the set up. As with any such system, the only
major vulnerability will reside with the user’s initial set-up and device.

Beyond the initial set-up, fewer vulnerabilities will be found in our system as it will no longer
rely on sensitive communications, random number generation, or sensitive mathematical computation.
By pushing the vulnerability to the initial set-up, it becomes possible to make the choice of device and
its environment much more secure and for this to have a much bigger pay-off in terms of the overall
security. Of crucial importance, as impossible as it may seem, we have ensured that no
communication with BqETH is necessary for the operation of the Dead Man Switch, although, of
course, for the user to benefit from the convenience of BqETH services, some amount of interaction
will exist.

4.2. Overview

At a very high level, our Dead Man Switch consists of setting up a Time Lock Puzzle, whose
solution is only known within the application immediately after its creation, yet cannot be discovered
by others unless some linear computation is performed (i.e. some deterministic amount of time has
passed).
We leverage the puzzle’s unbreakable nature to secure the secret by letting the Blockchain contract to
only allow its decryption once the puzzle has been solved. This is accomplished using a Condition
Based Decryption (CBD), decentralized service.

Ordinarily, the user can “flip the hourglass” - i.e. restart a a new puzzle, that we represent as
a Timer, delaying the possibility of decryption. The decentralized, CBD service will guarantee that the
payload can be decrypted only when the contract approves it. By design, the Condition Based
Decryption service does not require trust in a third party and meets all of our security requirements.

If the user does not renew the Time Lock Puzzle in time, the CBD service will be able to
decrypt the last collection of secrets - which we call ‘payload’ authorized by the contract. A system of
incentives provides rewards for individuals who dedicate CPU cycles to solving puzzles and
submitting decryption requests and proof of decryption. The rewards must be funded ahead of time
and constitute the dominant cost of using the Dead Man Switch, other than Ethereum gas fees.

4.3. Preliminaries

The Decentralized Dead Man Switch system makes use of several common cryptographic
primitives. Since Blockchain applications routinely use Hash functions, signatures and Elliptic Curve
point operations, we will only focus here on some of the unusual mathematics involved in our system.

7

4.3.1. Time Lock Puzzles

Time Lock Puzzles (TLP) are a very active area of research in the cryptographic community.
Variations on the subject take the name of Verifiable Delay Function (VDF) or Delay Encryption (DE).
Interest in this primitive has grown out of the need to force participants to wait in online decentralized
auction systems. The verifiability aspect refers to the ability of a participant to provide a commitment
to an intermediate result without revealing anything else. More recent developments have circled
around the use of Supersingular Isogenies which secure the primitive against quantum attacks while
making them easier to compute. The very first instance of a time lock puzzle was proposed by Rivest,
Shamir and Wagner (RSW) and is also known as the LCS35 puzzle.
In this original version, given a large integer the product of two secret large safe primes

the puzzle consisted of computing the value given a random initial value .
For anyone without the knowledge of the factorization of , this can only be done by repeated
modular squaring. The parameter provides control of the puzzle difficulty.
For the puzzle creator, the value can be computed efficiently knowing Euler’s Totient function

by noticing that . The
details of this simplification can be found in the Appendix.

4.3.2. Verification and Rewards

Recent research papers by Wesolowski and Pietrzak pioneered ways to provide a succinct
proof that a RSW style puzzle has been solved. The problem they were trying to solve was that of
proving that the result of puzzle computation is correct, in environments in which one cannot afford to
reveal the factorization of the modulus. It is obviously desirable to spare the verifier from having to
solve the puzzle themselves, especially in a decentralized environment, where the verifier is a smart
contract.

In the case of our Dead Man Switch, the outcome of solving a puzzle is used by different
actors. First there is the puzzle solver claiming a reward for publishing the solution. Note that claiming
the reward must be a two-step process, in which proof of completion as a commitment is provided to
‘lock-out’ any other claimants, then providing the solution that solves the puzzle and matches the
commitment. 3 Second, there are the Conditional Based Decryption nodes, who will query the
blockchain contract to obtain permission to decrypt. Third, when a user’s last puzzle is solved, a
reward can also be claimed for providing proof of decryption by publishing the decrypted payload.

There is also value in forcing puzzle solvers to show their work, to provide evidence of their
progress. First, economically, it can let puzzle solvers self-organize around the work that needs to be
done. Second, because preventing premature puzzle solving will be important for the Decentralized
Dead Man Switch system, the ability to monitor how fast the community of puzzle solvers can perform
repeated modular squarings will be necessary. The Stability section will discuss this dynamic in more
detail.

4.3.3. Chained Puzzles

One way to allow puzzle solvers to check-in their work for rewards is to simply create multiple,
shorter puzzles. For a year’s worth of puzzles, for example, twelve distinct puzzles could be

3 Simply providing the solution ‘in the clear’ could expose the puzzle solver to cheating from other participants,
and simply granting the reward on the submission of the proof alone could not guarantee that the solution would
be made public. This method is explored in the Commit & Reveal Puzzles section.

8

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20N%20%3D%20p%20%5Ccdot%20q%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20y%20%3D%20x%5E%7B2%5Et%7D%20%5Cpmod%7BN%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20x%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20N%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20t%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20y%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cphi(N)%20%3D%20(p-1)(q-1)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20y%20%3D%20x%5E%7B2%5Et%7D%20%5Cpmod%7BN%7D%20%3D%20x%5E%7B2%5Et%20%5Cpmod%7B%5Cphi(N)%7D%7D%20%5Cpmod%7BN%7D%20#0

generated, lasting a month each and chained, in such a way that the solution to the first one is
necessary to start solving the next one, yet, the puzzle solver can still check-in a proof that they
solved the puzzle. This method even allows for a market in partial puzzles to develop. The extra
storage on the blockchain is significantly higher but not prohibitive since a puzzle is entirely defined by
its starting point and an exponent if all puzzles in a chain share the same modulus.

To set up a chain, n random inputs for n puzzle challenges are generated, and then their

solutions are computed using the trapdoor. Then, a chain is set-up between the n
results: the solution of the first puzzle is used as a key to encrypt the second challenge and so
on. The initial challenge can be released, along with the n − 1 encrypted challenges.

Since the encryption for each challenge is uncrackable, and there’s no way to “jump forward”
in repeated modular squaring, there is no way to reach the final result faster than by solving each
puzzle sequentially. This technique can allow various puzzle difficulties (time parameter) to be
combined. The benefit is of course to provide finer controls over the overall puzzle length, but also to
gain visibility into how puzzle solving is tracking with the solve time estimate used at puzzle creation.
Shorter chained puzzles will also provide a disincentive for puzzle farmers to wait too long before
claiming their rewards.

9

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20x_i%20#0
https://www.codecogs.com/eqnedit.php?latex=%20y_i%20%3D%20x_i%5E%7B2%5E%7Bt%7D%7D%20mod%20%5C%3B%20N%20#0
https://www.codecogs.com/eqnedit.php?latex=%20y_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x_1%20#0

In the current embodiment of the system, BqETh uses chains of 32 puzzles.

4.3.4. NuCypher

NuCypher is a Threshold Condition Based Decryption service, not associated in any way with
BqETH. It is currently our selection for best-in-class for this function. The service is part of an array of
cryptographic solutions revolving around Threshold technologies, and offered by a company of the
same name. To avoid confusion, we will continue to refer to it as NuCypher.

The technology relies on several cryptographic primitives which are beyond the scope of this
paper to explain: Distributed Key Generation, Shamir Secret Sharing and Threshold Decryption.

For details on this amazing technology we refer you to NuCypher’s documentation. At a high
level, NuCypher allows one party to initiate a decentralized ritual for key generation, resulting in
multiple key shares being distributed among a set of specialized nodes, along with threshold
parameters for its use. The generated key pair is shared among nodes using Shamir’s Secret Shamir
method, which prevents any one of the nodes from using their share. The threshold parameter
dictates how many nodes are necessary to perform decryption and typically take the form of 2:3,
meaning 2 out of 3. Encryption is similar to traditional public key cryptosystems and uses a single
public key.

10

https://docs.nucypher.com/en/latest/api/nucypher.network.html

In contrast to other systems requiring multiple participants who must be trusted to 1) hold key
shares, 2) not collude and 3) agree to perform decryption and 4) agree on the conditions for
performing decryption, the NuCypher system relies on anonymous, decentralized, staked and
incentivized nodes to perform the decryption.

As for the agreement surrounding the conditions for decryption, the NuCypher system allows
such conditions to be programmed, along with the encrypted payload, such that decryption nodes can
all evaluate the conditions independently. Originally designed to facilitate decryption based on
conditions such as NFT ownership or other demonstrable attributes, the conditions can involve the
evaluation of a call to a blockchain contract. We use this feature to allow our contract to authorize the
decryption of payloads.

4.3.5. IPFS

The storage of large secrets, i.e., over a size considered affordable on the blockchain,if
desired, is relegated to the Inter Planetary File Systems (IPFS). It is outside the scope of this paper to
discuss IPFS in detail, but one important thing must be mentioned: IPFS replication is not
guaranteed. Therefore a mechanism will exist in BqETH to allow participating nodes to provide the
replication.

5. Implementation
At the core of the system, an Ethereum smart contract manages the publishing of puzzles, including
the required intermediate checkpoints and difficulty, the allocation of puzzle rewards, verification of
solutions and unlocking of rewards, as well as distribution of decryption rewards.
A Web3 application, capable of linking to Web3 wallets such as Metamask provides the interface for
users to perform the initial puzzle creation, as well as the set up of public parameters for their instance
of the contract, including funding of puzzle rewards.
We will refer to a user’s Ethereum address as their account, while referring to their active invocation of
the contract as their instance.

5.1. User level secrets

At the heart of a user’s puzzle generation is the prime composite N, product of two safe
primes. From the analysis of VDF papers, a minimum security parameter of 1124 is used, implying
that N should be at least 2048 bits. Recommendations from Albrecht, Massimo, Paterson and
Somorovsky (13) relating to the generation of large prime numbers in adversarial environments, has
been included in the Web3 application so there can be no leakage of the factorization. In particular,
we leverage the Baillie PSW state of the art method for selecting large primes, which is a combination
of Miller Rabin tests and Lucas tests and making sure both primes are safe primes by making sure

, and .
To date, no false prime has ever been found to pass these two tests. In addition,

recommendations from Blum, Blum & Shub have been selected to ensure the combination p & q
generates a large enough cycle and make factoring N more difficult than solving the puzzle.

The factorization of N can be discarded after the computation of the totient factor has been
used to calculate solutions to their puzzles. Once a user has set up their puzzle and encrypted their

4 From the NIST recommendation. Section $5.6.1
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
Also https://www.keylength.com/en/4/ .

11

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cphi%20#0
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://www.keylength.com/en/4/

secret, all private information can be discarded and no user information storage is necessary on the
part of the contract or application. This satisfies much of the privacy requirements laid out in the
Security Goals.

5.2. Main Secret Encryption

We have not yet discussed the primary purpose of the Decentralized Dead Man Switch, which
is to secure a secret. This payload, a short testament for example, a phrase allowing the decryption of
more secrets stored on a decentralized file system, or a token whose hash can unlock a Bitcoin P2SH
transaction5, will be encrypted using the Threshold public key, along with the Condition crafted to
prevent the decryption until the user no longer has an unsolved or inactive (implying death) puzzle. .
The Ethereum contract provides limited storage for such a payload or for the location of the payload
on a decentralized file system.

In this encrypted state, the payload cannot be decrypted by anyone, not even the user.

5.3. Puzzles

5.3.1. Generation
As explained in Preliminaries, puzzle generation involves picking a random 2048 bit seed ,

which will allow the creation of the first puzzle. Recall that the puzzle itself, published to the contract,
is simply the root value , for which the challenge is to compute

and which has solution

which is extremely fast to compute for the user, knowing the
private values and but very slow to compute for everyone else, as a sequence of modular

squarings .
We implemented cryptographic limitations to ensure the starting point belongs to the set of

Quadratic Residues Modulo N. According to Blum Blum Shub, one of these measures is to ensure the
seed is co-prime to both p and q.

The initial puzzle generation is assumed to occur under controlled conditions such that the
randomness of the first value is not a concern. Our app does not require contact with BqETH, and
only with the Ethereum Network when setting up the timer.

5.3.2. Difficulty Adjustment

The Application uses a value, published in the blockchain contract, for the fastest known
solving speed, as a benchmark for generating new puzzles with a difficulty that guarantees a
minimum solving time. Initially, BqETH will be responsible for updating this value, but we plan that the
contract will be able to update the value on its own. This is to avoid the possibility that a State actor
could pressure BqETH to shorten the life of the next puzzle for users using default values.

The value is read directly by the application from the blockchain with no interaction with
BqETH necessary.

With this framework, if the puzzle solving community finds faster ways to solve puzzles, the
expected solving time can be maintained for every user’s next puzzle. For more drastic changes in
solving speed, notifications to “flip the hourglass” - i.e. restarting a new puzzle - will be broadcast by
BqETH, and can be performed by the user in the Application.

5 The user must plan carefully to ensure such transactions are not accidentally invalidated by the user by
spending the UTXOs linked to the P2SH transactions.

12

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20s%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20x_0%20%3D%202%5E%7Bs%7D%20%5C%3B%20%5Cmathrm%7Bmod%7D%5C%3B%20N%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20y%20%3D%20x_0%5E%7B2%5Et%7D%20%5Cmathrm%7Bmod%7D%5C%3B%20N%20%3D%20(2%5E%7Bs%7D)%5E%7B2%5Et%7D%20%5Cmathrm%7Bmod%7D%5C%3B%20N%20%3D%20(2%5E%7B2%5Et%7D)%5E%7Bs%7D%20%5Cmathrm%7Bmod%7D%5C%3B%20N%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20y%20%3D%20%20(2%5E%7B2%5Et%20%5Cpmod%20%5Cphi%7D)%5E%7Bs%20%5Cpmod%20%5Cphi%7D%20%5Cmathrm%7Bmod%7D%5C%3B%20N%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cphi%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20s%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20y%20%3D%20(x_0)%5E%7B2%5Et%7D%20%5C%3B%20%5Cmathrm%7Bmod%7D%5C%3B%20N%20%20#0

5.3.3. Puzzle Verification

Puzzle verification proceeds using Pietrzak’s method mentioned in the Preliminaries section.

Pietrzak’s approach was to split the problem in two halves: can be re-written as

and . Combining the terms of these expressions on each side

allowed him to introduce the Fiat Shamir challenge for a zero

knowledge verification as which is a new statement of

the form in need of verification but with half the difficulty of the first.
The method then proceeds by halving the exponent from until reaching 1, at which point the

expression is trivial to verify.
The method is diagrammed below, using index 0 for the original puzzle expression with challenge
and solution , introducing the midpoint . Subsequent indices correspond to the expression in

need of a proof at a new, smaller exponent:

In the diagram above, substantial repeated modular squaring operations take place and are depicted

with red arrows. The terms do not present significant extra work to be performed, as they are
computed from combinations of powers of . The figure below from Pietrzak’s paper illustrates the

sequence of powers required for each in basis, with .

For example this yields: .

Pietrzak’s method spares the verifier the cost of calculating the terms by sending them over as the

proof and defining the terms as so the verifier can recreate them. This
is illustrated above by the blue arrows in the above figure.
The contract holds a temporary ‘credit’ associated with any Ethereum address which successfully
submits the correct X2+H1 combination that Hashes to H3. (see Commit and Reveal) The puzzle
solver is then able to wait as long as they wish to claim their reward. However, knowing someone else

13

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20y%3Dx%5E%7B2%5E%7Bt%7D%7D%20%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20u%20%3D%20x%5E%7B2%5E%7Bt%2F2%7D%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20y%20%3D%20u%5E%7B2%5E%7Bt%2F2%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20u%20%5Ccdot%20y%20%3D%20(x%20%5Ccdot%20u)%5E%7B2%5E%7Bt%2F2%7D%7D%20%5Cpmod%7BN%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20r%20#0
https://www.codecogs.com/eqnedit.php?latex=%20u%5E%7Br%7D%20%5Ccdot%20y%20%5Cpmod%7BN%7D%20%3D%20(x%5E%7Br%7D%20%5Ccdot%20u)%5E%7B2%5E%7Bt%2F2%7D%7D%20%5Cpmod%7BN%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20y'%20%3D%20x'%20%5E2%5E%7Bt%2F2%7D%20%5Cpmod%7BN%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20y''%20%3D%20x''%5E%7B2%7D%20%5Cpmod%7BN%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x_0%20#0
https://www.codecogs.com/eqnedit.php?latex=%20y_0%20#0
https://www.codecogs.com/eqnedit.php?latex=%20u_0%20#0
https://www.codecogs.com/eqnedit.php?latex=%20y_i%20%3D%20x_i%20%5E2%5E%7Bt%2F2%5Ei%7D%20%5Cpmod%7BN%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20u_i%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x_0%20#0
https://www.codecogs.com/eqnedit.php?latex=%20u_i%20#0
https://www.codecogs.com/eqnedit.php?latex=%20log_%7Bx_0%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Colsi%7B%5Cmu_i%7D%20%3D%20log_%7Bx_0%7D(u_i)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20u_3%20%3D%20(%7Bx_0%5E%7Bt%2F8%7D%7D)%5E%7Br_2%20r_1%7D%20%20(%7Bx_0%5E%7B3t%2F8%7D%7D)%5E%7Br_1%7D%20%20(%7Bx_0%5E%7B5t%2F8%7D%7D)%5E%7Br_2%7D%20%20%20(%7Bx_0%5E%7B7t%2F8%7D%7D)%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20u_i%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cpi%20%3D%20%7Bu_i%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20r_i%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H(x_i%20%2B%20y_i%20%2B%20u_i)%20#0

who might have completed the work could still claim the reward will motivate every puzzle solver to
claim theirs as soon as possible.

For use in the BqETH Application, code to generate puzzles and chain them, solve them and produce
the Pietrzak proof, then verify the proof was implemented in Typescript, Python, GoLang, and Solidity
and some of this code is available on GitHub.

5.3.4. Commit and Reveal

Because puzzle solvers must receive the rewards for their work without allowing an
enterprising Ethereum miner to substitute their own address, we must provide a way for them to prove
they are the legitimate solver of the puzzle, before providing the solution and its proof.

The way this is typically implemented is as follows. The application initializes and publishes

puzzle from some source of randomness to generate X1, and then calculates the solution

. To generate the next puzzle , a salted hash of the solution can be used for the value

. The salt is a public parameter. The next puzzle can be generated

the same way. In addition the application computes the hash of the solution as ,
and then the hash of the combination of these results is calculated as:

The application submits to the blockchain contract as a commit condition for releasing the reward.

Once a puzzle solver has spent time computing the solution , it is a simple matter for them
to compute and . To claim the reward, the puzzle solver must first submit to
prove they have found a value that hashes to and then create a Pietrzak proof of the work they
did to obtain , and send it as to the blockchain contract and to lock the reward to their address.

Notice this does not reveal anything useful to competing puzzle solvers, and does not allow a
malicious miner to substitute their address to claim the reward. It also prevents a lucky guess of the
values from being able to claim the reward without providing proof that they know later
on. When the puzzle solver submit the proof , the contract can verify the proof and confirm that
the puzzle solver who initially submitted is indeed the one deserving the reward, by computing

14

https://github.com/BqETH/PietrzakVDF
https://www.codecogs.com/eqnedit.php?latex=%20P_1%20%3A%20X_1%5E%7B(2%5E%7Bt%7D)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S1%20%3D%20X_1%5E%7B2%5Et%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20P_2%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20X_2%20%3D%20Hash(Salt%2BS1)%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20P_3%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20S_1%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_1%20%3D%20Hash(S_1)%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_3%3DHash(Hash(Salt%2BS_1)%2BHash(S_1))%3D%20Hash(X_2%2BH_1)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20H_3%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20H_1%2C%20X_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20H_3%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20X_2%2BH_1%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_3%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20X_2%2BH_1%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20S_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_1%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_3%20#0

, allowing a new transaction to credit the puzzle solver with the reward.

Because the puzzle solver does not have to submit immediately after submitting , they
can gain a head start on all other puzzle solvers who will learn of as the reward is claimed. Of
course, if they wait too long, they may be preempted by a different puzzle solver with the correct
solution. Also note that this commit/reveal method of claiming rewards is not specific to chained
puzzles, and therefore will be used to submit other solutions. Also note that a malicious Ethereum
node has no way to ‘grab’ values from the requests to claim the puzzle solution for themselves. The
blockchain contract can enforce a delay of at least one block between these interactions.

5.4. Condition Based Threshold Decryption

5.4.1. Network Access

During the initial set-up the application needs to access the NuCypher network as well as an
Ethereum network provider through the use of a Web3 wallet, for publishing to the smart contract.
Subsequently, every time the timer is renewed, the application needs to connect to the user’s Web3
wallet in order to update the contract.

15

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_1%2C%20X_2%2C%20H_3%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20S_1%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20H_3%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20X_2%20#0

In the current architecture, the NuCypher network provides the public key for encrypting
secrets. It is possible that in the near future, such communication might not be necessary. The
application will not issue an Ethereum network request to publish and activate a new puzzle until this
is complete.

5.4.2. Condition

A simple condition requiring that a user’s ‘instance’ has expired is sufficient to guarantee that
the nodes in charge of decrypting the secret payload will not authorize the decryption unless the
contract says so. The user’s wallet address (account) which is used to index their instance within the
smart contract, is hard-coded into the condition. At a high level, the condition is an instruction to check
with the smart contract that the user’s instance has expired. As explained in the NuCypher section,
each Threshold node in possession of a key share will execute a call to the contract to verify the
condition before agreeing to decrypt.

5.4.3. Renewal

When the user decides to ‘flip-the-hourglass’ timer and create a new puzzle, the condition will
not change. Only the last published puzzle is considered “active”. In this way, users can renew a timer
early, or change out their timer for a longer period of time.

5.4.4. Revocation

Because it is to be expected that people, in the course of their lives, might want to change
beneficiaries, allocations or their will or modify their revelations, users can update their payload and
publish the new encrypted version to the contract at any time. To ensure forward secrecy from the
Security Goals section, we opted to bind the conditions to the last published payload. This ensures a
past payload can never be decrypted.

As the payload is published to the contract, a simple signature of that message is kept as a
unique identifier by the contract and used as an extra comparison when crafting the condition to its
decryption. When NuCypher nodes call the contract to verify approval to decrypt, only those
messages matching the identifier will be approved for decryption. This is our unique solution to the
problem of ‘erasing’ data on public ledgers

5.5. Reward Management

5.5.1. Reward Storage

The Ethereum contract holds Ethereum tokens with allocation details for each of the puzzles,
in each of its instances, for each user. A planned feature is to allow users to contribute to the escrow
fund of any account instance. This means a user wishing to remain anonymous can obfuscate the
origin of their funds.

Once the user has flipped the hourglass and published a new puzzle, older puzzles remain
active until their reward has been claimed, but have no effect on the release of the payload..

5.5.2. Reward Allocation

Reward allocation is initially set by the user on a time-duration basis. The BqETH contract will
also store and make available the market rate for puzzle solving rewards, so that users can make
informed decisions about the reward they wish to attach to their timers.

A discussion of whether a puzzle reward should be adjustable should lead one to conclude it
should not. It should be obvious that the mere ability of adjusting it lower would destroy the incentives

16

of puzzle solvers. Likewise the ability to adjust it higher is only a binary incentive: if the puzzle is
already being solved, it does not affect the expected solving time by much6, and if the puzzle is not
actively worked on, it does not provide assurance it will. In both these cases, the user can leave the
reward for long-tail puzzle farmers who will dedicate old and slow hardware to collect the reward,
while simply ‘flipping the hourglass’ and spending a little extra on the next puzzle reward.

5.5.3. Decryption Reward

A small portion of the Timer’s reward will be set aside in the contract to reward the proven
decryption of a secret. This is an incentive to make sure secrets are decrypted in a timely fashion and
to ensure they are published. The contract uses a Commit/Reveal scheme similar to the one used for
puzzle reward claiming. When the secrets are small, the complete clear text message can be
provided as proof of decryption, and in the case of larger payloads, Merkle proofs can be provided for
the decryption and storage of the decrypted payload on IPFS.

5.6. Interaction

5.6.1. Web3 Application

The Web3 Application allows a user to check on the status of their current timer and the expected
date by which they are expected to ‘flip the hourglass’. We are only supporting a browser app at the
moment since we have security concerns with centralized phone platforms, their toolkits, and app
censorship. All applications will eventually be open-source and audited by BqETH.

The user application, because security is very important, features a simple interface allowing
very few customizations and exposing very few parameters. In the future the application will include
other notifications for clients of the monitoring services.

5.6.2. Wallet Integrations

Since funding of the Timer Reward of each instance may be performed from any address, the
application integrates with several well known crypto wallets such as Metamask, Coinbase as well as
with portals such as WalletConnect and Hardware wallets.

6 Some very smart people are working on ways to make repeated squarings much faster using ASICs, creating a
solving ‘gap’ between off the shelf computers with spare cycles and dedicated hardware. See for example:
https://www.gwern.net/docs/www/blog.janestreet.com/68ce637aa08a052399f781ddaf8e7f2fcb45e693.html

17

https://www.gwern.net/docs/www/blog.janestreet.com/68ce637aa08a052399f781ddaf8e7f2fcb45e693.html

5.7. Workflow

This section gives a visual representation of the workflow and interactions between the
Application, the Ethereum Contract, the NuCypher network and Puzzle Solvers.

5.7.1. Setup

● In the initial setup phase, the user has a secret key (sk) and public key (pk) pair that will allow
them to use the Ethereum contract.

● Using their device, the Application will pick random large safe primes p,q to obtain N and .
They will also pick a random number to create the first puzzle π.

● From the application, connectivity with the NuCypher Network is initiated and the Distributed
Encryption Key is accessed to encrypt the secret

● A condition is created for decryption of the payload. Because the condition is false as long as
the use has an active puzzle, effectively no-one can currently request decryption of the
cypher until the puzzle is solved.

● The final setup step is for the user to call the Ethereum contract and publish the cipher and
puzzle challenge along with the rewards for it.

18

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cphi%20#0

● The puzzle is then ready for solving and anyone can request the parameters of the challenge.

5.7.2. Recurring Interaction

In the next picture, we examine what happens during the lifetime of this contract, and the workflow
that takes place to ‘flip the hourglass’, substituting both puzzle and policy.

● In this step a new puzzle π’ is created.
● There is no interaction necessary with the NuCypher Network.
● The new puzzle π’ is published to the Ethereum contract as the new ‘active’ puzzle.
● Solving the older puzzle π still allows a puzzle farmer to contact the Ethereum contract to

claim their Ethereum reward.

19

5.7.3. Secret Replacement

Replacing the secret, as is expected for clients who need to amend or alter their wills, is simply a
matter of re-encrypting a new payload. The decryption condition associated with the payload is
updated to only allow decryption of the last secret.

5.7.4. End of Life

The final illustration shows what happens when the user passes.

● Assuming the last puzzle π’ has been properly solved as the user was unable to replace it, an
event is emitted from the blockchain contract notifying anyone interested in decrypting the
message.

● Decrypters can access the Cipher and request its decryption by NuCypher. The NuCypher
network nodes will call upon the contract to verify that the Decryption Condition is satisfied. If
so, a threshold number of nodes is assembled to decrypt the message which is then sent
back to the decrypter.

● The decrypter can compute proof of decryption and submit the plain text and proof to the
contract for publishing in a Commit/Reveal interaction to claim the decryption reward.

20

5.8. BqETH Services

Among the services BqETH will provide to clients of the Dead Man Switch, Notification and Delivery
are two important features that leverage the ability to monitor the blockchain contract for events.
BqETH Notification services will reach out to its clients when unusual situations emerge. For example,
when a timer nears completion, or if reward levels or puzzle solving speeds have changed
significantly since the timer was set-up. BqETH provides in-app suggestions for reward amounts when
setting up the timer, but over long periods of time, these may change.
BqETH Delivery services will provide the decrypted payload of its clients when a timer expires, to the
destination of their choice. Other services, such as puzzle farming, IPFS replication and payload
design, will be provided but are outside the scope of this white paper .

Naturally, the BqETH’s Application makes a distinction between the Secret Payload , i.e the
information that is to be delivered in the clear upon death, the Delivery details, in essence, who should
be getting the decrypted message and the Notification details, how to alert the owner.

The Secret Payload is encrypted only using the NuCypher Threshold Public Key and stored.
The Notification information is encrypted with BqETH’s public key only and sent through the contract
as an event, but not stored7. The Delivery details are encrypted for BqETH’s public key first, then
encrypted using the Threshold public key. This ensures that Delivery information is unknown to
BqETH until expiration of the timer, and remains private to BqETH after decryption, to protect the
identity of beneficiaries or attorneys.

The payload, notification and delivery details can all be replaced independently in the
application.

This section discusses things that will be monitored by BqETH in order to provide these services.
Many parameters, suggested by the application and enforced by the contract will vary. For example,
we can force the contract to only increase its estimates of the values of the solving difficulty necessary
to create 3-month puzzles, and so on for longer durations.
We know this because the computing power is not expected to ever fall.

It is also worth noting that the application features a test mode. With this test mode, puzzles
use a modulus known to BqETH , allowing their solution to be found at no cost. The timers in this
mode are limited to a very short period of time. This enables BqETH to conduct training sessions with
the live application but with non resource intensive puzzles.

5.8.1. Puzzle Farming

Puzzle solving needs monitoring in several ways. First and obviously, the ‘best of breed’
solving speed will be available from the expected duration of puzzles compared with the actual
check-in times. Another important metric will involve the expected check-in times against the actual
check-in time of puzzle solvers. This may provide insight into how much computing power is made
available to start solving puzzles and then switched to slower processing in order to discourage other
puzzle farmers.

5.8.2. Expiration Notifications

When a puzzle is nearing completion and if the user is alive, it becomes important to ‘flip the
hourglass’ to protect the secrets. Another option is to simply switch out the secret without
re-generating the puzzle, effectively canceling the contract.

In all cases however, the Ethereum blockchain, as a public ledger, will provide insight into
how many and which of these puzzle contracts face imminent solving. Such cases can be detected

7 Events are stored and can be found, but do not take ‘storage’ space in the contract.

21

by BqETH for its customers, and BqETH services will notify them using the settings provided during
set-up.

5.8.3. NuCypher

Monitoring of the health of the NuCypher network may also become important if more
resources must be dedicated to providing a reliable service. Also, monitoring of the NuCypher
Distributed Key will be important to make sure it remains funded. NuCypher will provide an API for
approving Encrypters and sponsoring the cost of the Distributed Key for its node operators.
Authorization of encryptors is only necessary before decryption and can be done after encryption has
taken place, therefore this can be performed asynchronously from encryption.

5.8.4. Reward pricing

Another metric that may prove useful is the amount of ‘actively worked puzzles’ so that advice
can be produced to reduce the number of under-rewarded puzzles that generate little interest from
puzzle farmers. Monitoring the number of puzzles actively being solved and their rewards will provide
insights into the supply and demand curves of the ecosystem, to advise users on what rewards are
appropriate for each length of time. The prices will depend on the supply and demand of puzzles as
well as the opportunity costs of tying up a CPU Core, and of course, the value of the rewards against
other crypto currencies. The application provides a suggested reward based on a value maintained in
the contract.

5.8.5. IPFS Replication Gaps

Because some users will want to store lots of information, in sizes that do not belong on the
blockchain, both for cost and forward security reasons, a file upload feature is available in the
application, which saves the encrypted information on IPFS, the decentralized file storage system.

The locator for the encrypted payload, known as “CID”, can be stored in the smart contract
as-is. Using this BqETH can effectively monitor the existence of a replicated version of the encrypted
files, for some of its customers. In addition, it can detect that replication gaps have occurred and notify
their customer or prevent such gaps from occurring by replicating them further. As discussed in other
sections, there is a case to be made for the information to be located in various geographies.

5.8.6. BqETH Puzzle Farming

BqETH will conduct Puzzle Farming as a profitable source of revenue for itself, initially until a
competitive market develops. For its clients, BqETH this provides a guarantee that a puzzle is always
being solved, to ensure their heirs will always be able to access the decrypted information.

5.9. Stability

5.9.1. Farming

Because puzzle-farming will rely on a system of incentives, it is important to discuss the
various forces at play that will hopefully lead to the emergence of a stable system.
What will lead someone with a spare computer to choose to dedicate CPU cycles to farming BqETH
puzzles ? What will influence them to stop and what sort of reward will need to be offered to them for
solving the puzzles are important questions.

We think that a thriving market will develop that will allow solvers to sell each other partially
solved puzzle chains. The system will operate in a world in which there is an opportunity cost to doing
computation, for example doing crypto currency mining or validation, or lending CPU cycles for
example with iExec or Golem. Companies such as Amazon or Linode sell CPU access that will put a

22

https://status.nucypher.network/

soft ceiling on the reward that must be offered8. It is important to keep in mind that the decision to
farm puzzles for Ethereum rewards will also depend on the value of Ethereum relative to other crypto
currencies.

Since older, expired puzzles with uncompetitive rewards will surely exist, new uses might be
discovered for older hardware in the form of puzzle farming. As computing power is expected to fall,
this may seem surprising, but the opportunity cost is what drives these decisions.

Will there be a reason to load-balance the solving of puzzles based on their known status
(new, half-done, near completion, expired) ? Certainly, the risk of physical destruction of puzzle
farming hardware would have a much bigger impact on the decision to farm new puzzles versus
expired puzzles. Floods, fires or simple power loss could impact such operations.

What if the existing reward on a puzzle gets too uncompetitive ? We have considered the
possibility that solving the last active puzzle could carry the reward for all inactive puzzles -all puzzles
with no probability of being ‘worked’, as an incentive to clear-out older puzzle chains. This is not
implemented but could soon be a feature to incentivize puzzle solvers to focus on the most recent
puzzle, the one with the most value for our user.

5.9.2. NuCypher
The stability of the NuCypher network will also be of significance. The NuCypher network is

secured by the threat of slashing nodes from their stake in NuCypher tokens if they fail to provide the
service. It is natural to wonder if the value of such a stake may become a vulnerability should the
NuCypher token become less valuable than they are now.

6. Improvements and Future work

6.1. Quantum resistance
The first obvious improvement to the system, and the most common question we get is how

to address Quantum Computing. The simplest is to switch the puzzle math to one that uses Elliptic
Curve multiplication. Some VDFs have already been partially tested with Elliptic Curve operations and
the Pietrzak VDF can also be adapted for Elliptic Curve operations.

But this only makes the system Quantum Frustrating. For Quantum Resistance, a conversion
of the CVDF to Supersingular Isogenies will be necessary. What is important to note is that the
conversion can be entirely transparent to users of the dead man switch.

6.2. Biometric Device Integrations

For some clients, ensuring the smooth operation of their instance might generate interest in
some integrations with biometric devices which can confirm their identity or detect operation under
duress. Because there are many projects leveraging the blockchain for securing identities, there is
little doubt we will investigate the possibility of leveraging and integrating them into the app to
streamline authentication.

8 Rewarding a puzzle above this level will almost guarantee an arbitrage profit for someone willing to rent an
AWS computer, and therefore jeopardize the possibility that many solvers would compete for the reward. As a
result, this level of reward would be counterproductive to ensuring the eventual decryption of their secret, should
they die.

23

6.3. Wallet Abstraction Integration

One of the biggest technological advances of 2022 and 20223 in blockchain technologies has
been the advent of Wallet Abstraction technologies: Magic and others have allowed users to on-ramp
into Crypto using traditional Banking systems and have provided features such as social recovery,
while avoiding the need for users to ‘remember’ a seed phrase. While it seems odd, on the surface,
that someone would want to lock-up crypto secrets while at the same time avoiding them by using
wallet abstraction technology, it is actually a likely scenario. Our system has applications for
management of multisignature keys, or securing of non-crypto related secrets, or custodial situations
involving law enforcement or probate courts. In these situations, wallet abstraction technologies
allowing the use of biometrics and other identification methods may prove useful.

6.4. Wallet Tech

Perhaps it is not obvious, but a useful scenario for the dead man switch is that of a wallet.
Wallet technologies have typically focused on permitting immediate access to the owner and no-one
else. However the dimension of time is largely lost, while the focus is restricted to the security of a
physical device, often re-centralizing what should remain decentralized.

However, the use case of a piggy-bank, which cannot be opened until a future date is equally
interesting. If the idea that crypto is a safe asset to cross borders is important, then an easier solution
than to remember twelve words might be to use BqETH with a ‘burner wallet’ to set up a timer which
expires in a few months and ensures you will be delivered your own seed phrase.

This concept of a time-capsule wallet will be worth exploring.
Another application is that of management of multisignature systems in which many parties

cannot afford to lose a quorum of signing shares. A Proof of Paralysis proposal was put forward in
2018 that solved this problem for corporate boards who need to recover from death or dementia
situations. Our system is very suitable for solving these kinds of problems.

7. Conclusion
Many people have tried to create a truly decentralized general purpose dead man switch for

digital information. Pamela Morgan calls it the holy grail of computing. While this is an important
achievement that many have naively thought they had solved, we believe it is a natural solution
arising out of the many technologies being created every day by very smart crypto enthusiasts. We
will continue to improve it. Its utility is evident, and will become obvious and mandatory to a growing
audience as the value of crypto currencies increases against the value of fiat currencies, and as the
bureaucratic controls become more prevalent.

The system is designed to give users ultimate control over their assets, to be decentralized in
the best way possible, eliminating the threat of censorship or denial of service, providing perfect
forward secrecy, offering privacy and time integrity. The cost of operation is as low as possible to
guarantee time integrity. The system is non custodial and protects beneficiaries with the same level of
protection as the assets they will inherit.

8. References

1. Casa: Comprehensive Bitcoin Inheritance
2. Goldin, Mike. Dead Man Switch https://github.com/skmgoldin/dead-mans-switch
3. Ronak, Doshi Whistle https://github.com/Ronak-59/Whistle-dApp

24

https://keys.casa/bitcoin-inheritance-plan
https://github.com/skmgoldin/dead-mans-switch
https://github.com/Ronak-59/Whistle-dApp

4. Seres, Shlomovits and Tiwari: CryptoWills. https://eprint.iacr.org/2020/283.pdf
5. Whineman, John: Living Proof https://github.com/jwineman/livingproof
6. Zhang, Daian, Bentov. Paralysis Proofs. https://eprint.iacr.org/2018/096.pdf
7. Rivest, Shamir, Wagner. Time-lock Puzzles and Timed-release Crypto (1996)
8. Blum, Blum, Shub https://crypto.junod.info/bbs.pdf (1986)
9. Rabin, Thorpe. Time Lapse Cryptography (2006)
10. Liu, Jager,Kakvi, Warinschi. How to build time-lock encryption (2015)
11. Wesolowski . Efficient verifiable delay functions (2018)
12. Pietrzak. Simple Verifiable Delay Functions (2018)
13. Ning, Dang, Hou, Chang. Keeping Time-Release Secrets through Smart Contracts (2018)
14. Albrecht, Massimo, Paterson, Somorovsky. Prime and Prejudice: Primality Testing Under

Adversarial Conditions (2018)
15. Boneh, Bunz, Fisch. A Survey of Two Verifiable Delay Functions (2018)
16. De Feo, Masson, Petit, Sanso. Verifiable Delay Functions from Supersingular Isogenies and

Pairings (2019)
17. Ephraim, Freitag, Komargodski, Pass. Continuous Verifiable Delay Functions. (2019)
18. Malavolta, Thyagarajan. Homomorphic Time-Lock Puzzles and Applications (2019)
19. Attias, Vignery, Dimitrov. Implementation Study of Two Verifiable Delay Functions (2020)
20. Burdges, De Feo. Delay Encryption. (2020)
21. Krishnan, Gong, Bhat, Kate & Schröder: OpenSquare: Decentralized Repeated Modular

Squaring Service (2021)

25

https://eprint.iacr.org/2020/283.pdf
https://github.com/jwineman/livingproof
https://eprint.iacr.org/2018/096.pdf
https://www.cerias.purdue.edu/apps/reports_and_papers/view/981
https://crypto.junod.info/bbs.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.5196
https://eprint.iacr.org/2015/482.pdf
https://eprint.iacr.org/2018/623
https://eprint.iacr.org/2018/627.pdf
https://eprint.iacr.org/2018/1166.pdf
https://eprint.iacr.org/2018/
https://eprint.iacr.org/2018/
https://crypto.stanford.edu/~dabo/pubs/papers/VDFsurvey.pdf
https://eprint.iacr.org/2019/166.pdf
https://eprint.iacr.org/2019/166.pdf
https://eprint.iacr.org/2019/619.pdf
https://eprint.iacr.org/2019/635.pdf
https://eprint.iacr.org/2020/332.pdf
https://eprint.iacr.org/2020/638
https://eprint.iacr.org/2021/1273.pdf
https://eprint.iacr.org/2021/1273.pdf

9. Appendix

Euler Totient Function’s Trapdoor.

Euler’s Totient Function allows the trapdoor simplification of the RSW Puzzle because

of Euler’s Theorem:

As follows: write and assume for some we can write

then

per Euler’s Theorem

Since or equivalently we have

Carmichael’s function divides Euler’s totient function, so the trapdoor can be simplified to use

it, and in many cases this makes sense, because could be much larger. But because
Carmichael’s function is slightly more difficult to calculate, there is no advantage in using it
here, since the solution is rarely calculated.
Carmichael’s function is defined as . λ(𝑁) = 𝑙𝑐𝑚(λ(𝑝), λ(𝑞)) = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1)

ElGamal Encryption

Recall that to encrypt a secret m, ElGamal encryption creates two values:

and with , with r a random
value and a prime.

Decryption by the holder of is done with since it simplifies to

.

Alternate versions exist in which terms are multiplied by the modular inverse of and a
similar formulation exists for the Elliptic Curve version.

26

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cphi(n)%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20a%5E%7B%5Cphi(n)%7D%20%5Cequiv%201%20%5Cpmod%7Bn%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20e%20%3D%202%5Et%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20e%20%3D%20c%20%2B%20d%5Cmul%7B%5Cphi(n)%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20d%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20e%20%5Cequiv%20c%20%5Cpmod%7B%5Cphi(n)%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20a%5E%7Be%7D%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20n%20%3D%20a%5E%7B%5Bc%20%2B%20d%5Ccdot%7B%5Cphi(n)%7D%5D%7D%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20n%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%3D%20a%5Ec%20%5Ccdot%20(a%5E%7B%5Cphi(n)%7D)%5E%7Bd%7D%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20n%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%3D%20a%5Ec%20%5Ccdot%201%5Ed%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20n%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%3D%20a%5Ec%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20n%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20e%20%5Cequiv%20c%20%5Cpmod%7B%5Cphi(n)%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20c%20%3D%20e%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20%5Cphi(n)%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20a%5E%7Be%7D%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20n%20%3D%20a%5E%7Be%20%5C%3B%20%5Cmathrm%7Bmod%7D%20%5Cphi(n)%7D%20%5Cmathrm%7Bmod%7D%5C%3B%20n%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cphi(n)%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20c_1%20%3D%20g%5Er%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20P%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20c_2%20%3D%20p_k%5Er%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20P%20%5Coplus%20m%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20p_k%20%3D%20g%5E%7Bs_k%7D%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20P%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20P%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20s_k%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20m%20%3D%20c_2%20%5Coplus%20(c_1%5E%7Bsk%7D)%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20P%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20m%20%3D%20(p_k%5Er%20%5Coplus%20m)%20%5Coplus%20(g%5Er)%5E%7Bsk%7D%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20P%20%20%3D%20(g%5E%7Bsk%7D)%5Er%20%5Coplus%20m%20%5Coplus%20(g%5Er)%5E%7Bsk%7D%20%5C%3B%5Cmathrm%7Bmod%7D%5C%3B%20P%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20g%5E%7Bsk%7D%20#0

